
Software-Defined Federation

Moustafa AbdelBaky, Javier Diaz-Montes, and Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)

Rutgers Discovery Informatics Institute (RDI2)

Rutgers, The State University of New Jersey

Software Defined Federation

• Combine ideas from federated

computing, cloud computing, and

software defined environments

• Create a nimble and programmable

environment that autonomously evolves

over time, adapting to:

– Changes in the infrastructure

– Application requirements

• Independent control over application

and resources

Programmatic Provisioning

• Provision and federate an appropriate mix of

resources on-the-fly

– Enable the creation and modification of these

federations programmatically

– Separate the control plane from the execution plane

– Provide programming abstractions to support the

continuous execution of applications

Dynamic Provisioning

• Declarative specification to define availability as well as

policies and constraints to regulate resource usage

– Customized views of the federation for different projects or

situations

– Specify how to react to unexpected changes in the resource

availability or performance or application behavior

• Evolve in time and space -- the evaluation of these

policies and constraints provides a set of available

resources during runtime

4

Software-defined Ecosystem User/Provider

Software-Defined Federated Cyber-infrastructure

Synthesize a space-time

federated ACI

Exposed as a

uniform resource to

the

application/workflow

Autonomic Manager
Scientific Applications

& Workflows

• Workflow definition

• Objectives (deadline, budget)

• Requirements (throughput,

memory, I/O rate)

• Defined in terms of science

(e.g., precision, resolution)

- vary at runtime -

• Identify utility of federation

• Negotiate with application

• Ensure applications’

objectives and constraints

• Adapt and reconfigure

resources and network on

the fly

Define federation programmatically

using rules and constraints

• Availability

• Capacity & Capability

• Cost

• Location

• Access policy

- vary at runtime -

RULE ENGINE BASED

SOFTWARE-DEFINED

FEDERATION

Architecture

• Policy Layer

• Execution Engine

• Federation Abstraction

Layer

• Federated Infrastructure

Layer

Policy Layer

• The policy layer provides mechanisms for expressing the

attributes of the federation in terms of resource availabilities

and constraints

• Supports different types of policies that are tailored to meet

the needs of the different actors (e.g., users, applications, and

resource providers)

• Generic Policies

– Direct declaration of resources over time

• User Policies

– Expose resources in terms of cost or deadline

• Application Policies

– Expose resources in terms of type or capacity

• Resource Provider Policies

– Expose resources in terms of utilization

Execution Engine

• A rule engine enables the policy-

based management of the

federation process

– Translates the high-level policies at

runtime into a set of resources (recipes)

– Ensures the orchestration of federated

sites over time according to these recipes

using the federation abstraction layer

– Executes the application on top of the

resulting federated infrastructure

– Monitors the composition of the federation

over time and modifying it as necessary

based on existing and new policies

Federation Abstraction Layer

• Exposes federation mechanisms as uniform programming

abstractions and supports the addition/removal of sites, scale

up/down of resources within a site, discovery of sites and

resources, etc.

• Provides abstractions for monitoring the status of the

federated infrastructure, e.g., the available sites, number of

available resources, number of resources running

applications, etc.

– Resource description operations

– CometCloud federation agent operations

– Application execution operations

– Status operations

Use Case Scenario – User Driven Federation

• A user has an application that she would like to execute on a

set of available resources

• These resources can be owned by the user (e.g. local

machine or clusters), shared (e.g. allocations on a

supercomputer), or paid per usage (e.g. cloud resources)

• The objective defined for this application is maximizing

throughput, i.e., aggregating as much computational power

from the federation as possible

• Using our SDF framework, the user can specify the list of

available resources and their usage policy in two separate

methods.

– Scenario 1: The user can declare a strict description policy that

specifies the exact composition of the federation over time

– Scenario 2: The user defines the desired behavior of the federation but

not its exact composition over time.

Experimental Summary

• Run on Future Systems

always

• Run on Spring daily

from 11:05:00 to

11:40:00

• Run on Green from

02/28/2015 11:15:00 to

02/28/2015 11:30:00

• Run on Chameleon

when the dynamic price

is less than $0.1 per

hour

Results

• Dynamic policies

• Resource allocation

• Throughput

• Cost-based allocation

• Small experiment but..

CONSTRAINT PROGRAMMING

BASED SOFTWARE-DEFINED

FEDERATION

Approach

I. Separate resource selection from application scheduling

II. Build a constraint programming model to specify finer

grained user/provider requirements for resource

provisioning
• Example Constraints: Availability, Capacity, Utilization, Cost, Performance,

Security, Power, Overhead, Waste, …

• Ability to add or remove new/existing constraints

III. Deploy applications using a resource-selection aware

scheduler

IV. The entire process is continuously repeated to allow for

dynamic adaptation.

Architecture

