RUTGERS

THE STATE UNIVERSITY
OF NEW JERSEY

CometCl, Qad ‘

Software-Defined Federation

Moustafa AbdelBaky, Javier Diaz-Montes, and Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)
Rutgers Discovery Informatics Institute (RDI?)
Rutgers, The State University of New Jersey

RUTGERS

Software Defined Federation

4 N\ R N\
. . Apbplicati esource
Combine ideas from federated Workflow oi‘:;:\::: Availability and

computing, cloud computing, and
software defined environments

‘ s
« Create a nimble and programmable \./ m

environment that autonomously evolves
over time, adapting to:

— Changes in the infrastructure

— Application requirements Autonomic Management

Constraints

j(

Programming Abstractions

Workflow Manager J Resource Manager J

- - F tion M t
 Independent control over application SdentionManig imen

and resources w ”

RUTGERS

Programmatic Provisioning

* Provision and federate an appropriate mix of
resources on-the-fly

— Enable the creation and modification of these
federations programmatically

— Separate the control plane from the execution plane

— Provide programming abstractions to support the
continuous execution of applications

RUTGERS

Dynamic Provisioning

« Declarative specification to define availability as well as
policies and constraints to regulate resource usage

— Customized views of the federation for different projects or
situations

— Specify how to react to unexpected changes in the resource
availability or performance or application behavior
* Evolve in time and space -- the evaluation of these
policies and constraints provides a set of available
resources during runtime

RUTGERS

Software-defined Ecosystem

Scientific Applications
& Workflows

ﬁ Workflow definition
* Objectives (deadline, budget)
* Requirements (throughput,
memory, /O rate)
» Defined in terms of science

(e.g., precision, resolution)
- vary at runtime -

Autonomic Manager

ﬂ Identify utility of federatiorm
» Negotiate with application
» Ensure applications’
objectives and constraints
» Adapt and reconfigure
resources and network on

User/Provider

/Define federation programmaticam
using rules and constraints

\ the fly)

Exposed as a
uniform resource to
the
application/workflow

Availability

Capacity & Capability
Cost

Location

Access policy

- vary at runtime - /

Synthesize a space-time
federated ACI

Software-Defined Federated Cyber-infrastructure

RUTGERS

RULE ENGINE BASED
SOFTWARE-DEFINED
FEDERATION

RUTGERS

Architecture

« Policy Layer
« EXxecution Engine

 Federation Abstraction
Layer

 Federated Infrastructure
Layer

Execution

Federation
Abstraction Layer

Federated Infrastructure

Policy Layer

Engine

Layer

|

& e
G e
e l:l

T, e
e

¥ L A
Resource |
provider

. abstractions y

F‘oll-::y AP

Generic
abstractions

User
abstractions

Application
abstractions

b
"

Policy RESTful Web Service

List Current
Istener Policies

. Federation Execution Engme

—] .
Rule Enactor _Ryles
Dictionary

report status| « control federation"

Federation API

Federation RE:ETfuI Web Serviuse 1

b L

Federation
Agent

y
Federation

Workflow

Manager

Agent

i
Application .
/J PP . Federation
Execution
_ Management Space
Space

RUTGERS

Policy Layer

« The policy layer provides mechanisms for expressing the
attributes of the federation in terms of resource availabilities
and constraints

« Supports different types of policies that are tailored to meet
the needs of the different actors (e.g., users, applications, and
resource providers)

« Generic Policies

— Direct declaration of resources over time
« User Policies

— EXxpose resources in terms of cost or deadline
« Application Policies

— Expose resources in terms of type or capacity

« Resource Provider Policies
— EXxpose resources in terms of utilization

RUTGERS

Execution Engine I N

x_\q_ Start federation execution engine J,f
- A rule engine enables the policy- I R
based management of the T
federation pI’OCGSS Fetch high-level policies from the
— Translates the high-level policies at policy web service or wait for new
runtime into a set of resources (recipes) requests
— Ensures the orchestration of federated 1
sites over time according to these recipe:
using the federation abstraction layer For each resource: update policy
— Executes the application on top of the l

resulting federated infrastructure |

— Monitors the composition of the federatio
over time and modifying it as necessary

based on existing and new policies Start/Update
Rule Enactor Instance |

—

RUTGERS

Federation Abstraction Layer

« EXposes federation mechanisms as uniform programming
abstractions and supports the addition/removal of sites, scale
up/down of resources within a site, discovery of sites and
resources, etc.

* Provides abstractions for monitoring the status of the
federated infrastructure, e.g., the available sites, number of
available resources, number of resources running
applications, etc.

— Resource description operations

— CometCloud federation agent operations
— Application execution operations

— Status operations

RUTGERS

Use Case Scenario — User Driven Federation

A user has an application that she would like to execute on a
set of available resources

These resources can be owned by the user (e.g. local
machine or clusters), shared (e.g. allocations on a
supercomputer), or paid per usage (e.g. cloud resources)

The objective defined for this application is maximizing
throughput, i.e., aggregating as much computational power
from the federation as possible

Using our SDF framework, the user can specify the list of
available resources and their usage policy in two separate
methods.

— Scenario 1: The user can declare a strict description policy that
specifies the exact composition of the federation over time

— Scenario 2: The user defines the desired behavior of the federation but
not its exact composition over time.

RUTGERS

Experimental Summary

Run on FUture SyStemS Table 1: Resources available at each site and their charac-

always

Run on Spring daily
from 11:05:00 to
11:40:00

Run on Green from
02/28/2015 11:15:00 to
02/28/2015 11:30:00

Run on Chameleon
when the dynamic price
IS less than $0.1 per
hour

teristics.

Future Systems - OpenStack Cloud

Resource #Cores Memory Performance Max., VMs*

VM_Medium 2 4 GB 1.36 3
VM_Small 1 2GB 0.69 6

Spring - HPC Cluster

Resource’ #Cores Memory Performance Max. Machine?

Bare-metal 5 24 GB 1.42 16

Green - HPC Cluster

Resource’ #Cores Memory Performance Max. Machine?

Bare-metal ot 24 GB 0.42 16

Chameleon - OpenStack Cloud

Resource #Cores Memory Performance Max. VMs*

VM_Medium 2 4 B 1 3
VM_Small 1 2 GB 0.5 4

Note: I — Maximum number of available VMs/bare-metal per
Ly pe

RUTGERS

Spot Price ($)

Results

300
Gresn o
550 - Chamelﬁﬁg —
« Dynamic policies 8 oo FutureSys. &=
]] -
« Resource allocation - 150]
@
* Throughput £ 100 - :
« Cost-based allocation c :
- Small experiment but.. 0 FSSTSSSSSRTTTITTITTTTTIICITOSTCS
0 & 10 15 20 25 30 35 40 45 50
Time (Min)
18 | | | | | | | | |
Green
16 Chamelenn — B
0.35 : : : : : : :
w 14 FutureSysfems o | B
03 1 f _g} 12 i
0.25 s 10 =
0.2 1 - E 8 ~
0.15 - i E. 6 - i
0.1 - . 4 @ Q\)_
2
ocs- ; @M\J\M\&\@MM
0 T T T T T T T
10 15 20 25 30 35 40 45 50 o 5 10 15 20 30

Time (Min) Time {Min)

RUTGERS

CONSTRAINT PROGRAMMING
BASED SOFTWARE-DEFINED
FEDERATION

RUTGERS

Approach

. Separate resource selection from application scheduling

|l. Build a constraint programming model to specify finer
grained user/provider requirements for resource
provisioning

« Example Constraints: Availability, Capacity, Utilization, Cost, Performance,
Security, Power, Overhead, Waste, ...

« Ability to add or remove new/existing constraints
lll. Deploy applications using a resource-selection aware
scheduler

I\VV. The entire process is continuously repeated to allow for
dynamic adaptation.

RUTGERS

Architecture

P N e F P _"\.I o™ ¥ 1 i
1 il a I'H.l.-' - = I\L-_l ."'\-i-' "\.'m_.-' ;|. z. .: = .- s E ._:..'._. e o' ._1.. & — :‘.-:I Yy et | e s B .\I_..-I-\._. S

) -
— Resource Provider &

User Constraints *

© 06 O '

-
.,.
-

[=
-
-

[

[=
.
-

[

=

(&

-
-

=
[

Generate all Constraint Programming
available resource Solver
at any given time

*These constraints define the behavior of
resources over time irrespective of any
container worlloads

Application Workload -

& User Constraints *

Repeat when
resources or
workload change

*These constraints and objectives define
the desired behavior of a specific
workload over all available resources

schedule

Comet Web Service

CometCloud

CometCloud Federation
Execution Engine

Application
Deployment Enactor

Create a federation across the
given resources

