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Defining the landscape

* Analysis of existing published work
— Give potential research directions
* Various uses of autonomics — will focus on:
— Auto scaling and elasticity
— Streaming analytics
— Integrating autonomics into applications
* Integrating autonomics with
— Existing Cloud middleware
— Distributed Cloud landscape (e.g. GENI Cloud)
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Cross layer Intelligence

* Applications can exhibit dynamic and
heterogeneous workloads

— Hard to pre-determine resource requirements
* QoS requirements can differ across multi-
tenancy applications
— Batch vs. real time, throughput vs. response time
* Integrating local resources with Cloud
provisioned resources
— Cloud “bursting” (when and for how long)
— Data sharing dynamically between the two
— Cost implications for long term use
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From Chenyang Lu (Washington Univ. in St Louis)

Links with Control theory

Applying input to cause system variables to conform
to desired values — often a “set” or “reference” point
— E-commerce server: Resource allocation? = T_response=5 sec
— Embedded networks: Flow rate? = Delay = 1 sec
— Power usage: Energy? = Consumption < 250Watts

Provide QoS and related guarantees in open, unpredictable
environments

Various modelling approaches:

— Queuing theory (very popular) — no feedback generally in queuing
models; hard to characterise transient behaviour overloads

— Other approaches: Petri nets and Process algebras
— Often a design/tune/test cycle — repeated multiple times

From Chenyang Lu (Washington Univ. in St Louis)

Open-loop control

Compute control input without continuous variable
measurement

— Simple

— Need to know EVERYTHING ACCURATELY to work right

* E-commerce server: Workload (request arrival rate? resource
consumption?); system (service time? failures?)

Open-loop control fails when

— We don’t know everything

— We make errors in estimation/modeling
— Things change
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From Chenyang Lu (Washington Univ. in St Louis)

Feedback (close-loop) Control
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From Chenyang Lu (Washington Univ. in St Louis)

Feedback (close-loop) Control

* Measure variables and use it to compute control
input
— More complicated (so we need control theory)

— Continuously measure & correct
* Ecommerce server: measure response time & admission control
* Embedded network: measure collision & change backoff window

* Feedback control theory makes it possible to control
well even if:
— We don’t know everything
— We make errors in estimation/modeling
— Things change
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From Chenyang Lu (Washington Univ. in St Louis)

Control design methodology
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From Chenyang Lu (Washington Univ. in St Louis)

System Models

Linear vs. non-linear (differential eqns)
Deterministic vs. Stochastic
Time-invariant vs. Time-varying

— Are coefficients functions of time?
Continuous-time vs. Discrete-time
System ID vs. First Principle

System Goals:
— Regulation (e.g. target service levels)

— Tracking (measuring deviation from a target, e.g. change
H#VMs)

— Optimisation (e.g. minimize response time)
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VM consolidation

A commonly referenced problem in

Cloud computing

— Server cost the largest contributor to
overall operational cost

Data centers operate at very low

utilization

— Microsoft: over 34% servers at less than
5% utilization (daily average). US
average 4%.

VM Consolidation increases utilization,

decreases idling costs

However VM consolidation can cause
interference in the memory hierarchy

Core 1 Core 2

Memory

(e.g. due to sharing of cache between :
. Hierarchy
cores or memory bandwidth) P;
t—— | Interference
is here

VM Consolidation: PACMan

How much will each VM degrade when placed

with other VMs?

Which and how many VMs can be placed on a

server whilst still maintaining performance?

PACMan (Performance Aware Consolidation

Manager)

— Minimise resource cost (energy usage or #servers)

— Use of an approximate (computationally efficient)
algorithm

Differentiate between:

— Performance vs. resource efficiency (e.g. batch mode)

— Eco mode: fill up server cores (minimise worst case
degradation e.g. MapReduce — minimise time of worst
case Map task)
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Parameters considered: “n” VMs, on “m” machines with “k” cores
Consider a “degradation” parameter as new VMs are added to a machine —identify an
optimisation goal —e.g. W . - .

Goal: Minimize max maxd;" (S; is the set of VMs
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on server i)

Alan Roytman, Aman Kansal, Jie Liu and Suman Nath, “PACMan: Performance Aware
Virtual Machine Consolidation”, Proceedings of ICAC 2013, San Jose, USA (USENIX/ACM)

PACMan — Approach

» Start from an arbitrary initial schedule

* For all ways of swapping VMs, go to the
schedule with smallest sum of maximum
degradations

* Limit total number of swaps to achieve

convergence
{ABCHD.EF}

{AECHDB,F}
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Elasticity

* One of the key “selling points” of Cloud
systems
* Various approaches possible:

— Often historical information useful (response
times, queue lengths, arrival rates and request
demands)

— Long-term, medium-term and short-term planning
— VM allocation and placement

* Reactive vs. proactive approaches

Dynamic VM allocation

* Understanding “Elasticity”

the degree to which a system is able to adapt to
workload changes by provisioning and de-
provisioning resources in an autonomic manner,
such that at each point in time the available
resources match the current demand as closely as
possible.

* Can elastic provisioning capability be
measured

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)




Dynamic VM allocation

* Scale up speed: switch from an underprovisioned
state to an optimal or overprovisioned state.

|II

— Can we consider “tempora
takes place

aspects of how scaling up

* Deviation from actual to required resource
demand

— Measure deviation to influence the overall process

* Role of predictive allocation for “known” events
— i.e. know in advance how many VMs to allocate

Scaling Influences & Strategies

* Reactive

— Observed degradation in performance over a
particular time window

e Trace-driven

— Based on a short-term prediction

— Could make use of a “cyclic” workload pattern
* Model-driven

— Use of a queuing/Petri net/dynamic systems
model

— Often parameters “observed” and tuned off line
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An Example
#eqfec Service Level Agreement (SLA):
workload intensty E.g.: resp. time < 2 sec, 95%
Resource Demand:
Minimal amount of #VMs required
‘ to ensure SLAs.
tme™
#/Ms
o 4 NN\
. / _J— resource demand
7 7/, underprovisioning
s I resourde supply
27 &\\:ovetpmvisioning
e

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

Comparing allocation

#req/sec. #req/sec.
+ workload intensity 4 workload intensity
ﬁme= fme=
#/Ms #/Ms
g A NN o A
7
1 Y ° % N
4 N 4 %
NN i
2 systemA 2 vz systemB
ﬁme= t'me=

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)
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Elasticity Metrics
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g NN 7/ underprovisioning
‘0 N __[resource supply
g NN N\ overprovisioning
g B, \\\
A D
L
BS
7 X
: N
N e
_A'j tme *
™M Jr L} J

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

Elasticity Metrics ... 2

A |Average time of switch from an underprovisioned to an optimal or overprovisioned state

[1rahmen_neu folge}average speed of scaling up
YA Accumulated time in underprovisioned state.
U  Average amount of underprovisioned resources during an underprovisioned period.
>U Accumulated amount of underprovisioned resources.

B,YB,0,Y.0 correspondingly for overprovisioned states

Y 2.0 Average precision e
Pu:T"Pd:Tr of scaling up / down E | - meomensey

T = total evaluation duration

1 1 Elasticity metric
B= 555" 50 for scaling up / -
down £ _

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)
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H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, “AGILE: Elastic distributed resource scaling
for Infrastructure-as-a-Service”, Proceedings of ICAC 2013, San Jose, USA (USENIX/ACM)

AGILE

Overload starts Overload stops

SLO violation feedback

____________________________________ |
o 1 t
Resource usage, l }

o . 1
monitoring

Resource demand Resource pressure
prediction modeling

1

1

1

1

1

1

1

1

L 1
1

Future resomW Resource to i
demand maintain |
1

1

1

1

1

1

1

1

1

1

Server pool prediction

When to scale | How many VMs

add/remove

Server pool scaling manager 1

AGILE

* Medium term predictions using Wavelets

* Use of an “adaptive” copy rate
— Pre-copy live VM based on prediction
— Avoids performance penalty

— Does not requiring storing and maintaining VM
snapshots

— Can be undertaken incrementally — therefore avoids
“bursts” in traffic when submitting an entire VM (e.g.
compared to “cold cloning”

* Supports post-cloning auto-configuration
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Supporting Elastic Behaviour

* Variety of approaches possible:

* Modelling decisions as a Markov Decision
Process (TIRAMOLA successfully resizes a
NoSQL cluster in a fully automated manner)

* Use of classifier ensemble

* Machine learning strategies (e.g. use of neural
networks)

* Rule-based (trigger-driven) approaches

“Automated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA”
Dimitrios Tsoumakos, loannis Konstantinou, Christina Boumpouka, Spyros Sioutas,
Nectarios Koziris, CCGrid 2013, Delft, The Netherlands

Hybrid Approaches

* Use of different techniques for scaling up vs.
scaling down
— Reactive rules for scaling up, regression-based
techniques for scaling down

— Reactive rule: queue length of waiting requests
(but could be other criteria)

— Predictive assessment (use of queuing models) to
dynamically trigger new VMs

5/31/14
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TIRAMOLA

TIRAMOLA N

1

Decision Making ) .
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Resize Action |

|

Orchestrate Cloud |
Cluster Management /!

|

Cluster Adjust !
Coordinator resources_,

Manage  Add/delete i
NoSQL nodes Vs

@ﬁ LOM: Virtual NoSQL Cluster iCloud Provider |
Fig. 1. Architecture of the TIRAMOLA elasticity-provisioning framework.

TIRAMOLA

Decision Making

— cluster resize action according to the applied load, cluster
and user-perceived performance and optimization policy

— Modelled as a Markov Decision Process (look for best
action w.r.t. current system state)

— User goals defined through a reward function (mapping of

optimisation goals)
Monitoring via Ganglia
— Server + user metrics (via gmetric spoofing)
Cloud Management
— Via euca2ools (Amazon EC2 compliant REST library)
Cluster Coordination
— Via remote execution of shell scripts

5/31/14
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TIRAMOLA

Formulates resize decisions as a MDP

— State defined as #V/Ms, CPU usage, memory

— Actions: add, remove or do-nothing (no-op)

— Actions limited by a quantifier, i.e. add_2, add_4
(restrictions on these quantifiers)

— Transition prob. — based on if state is permissible or not
(e.g. can exact number of VMs be added) — can be
generalised to partial additions

— Reward function — r(s): “good ness” of being in state (s);
r(s) = f(gains, costs)

MDP enables:

— No knowledge of dynamics of environment is assumed

— Learnin real time (from experience) and continuously
during the lifetime of the system

TIRAMOLA

Use of Q-learning (a type of reinforcement
learning)

Q(s,a) = Q(s,a) + alr(s') + ymax Q(s',a’) — Q(s, a)]

Base calculation of r(s) on a particular arrival rate
(of requests) and certain number of VMs

Collect results into a table — and use historical
data to identify action and s’ (given s)

r(s) = f(latency, VMs)

5/31/14
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AutoFlex

* Use of monitoring to collect:

— CPU, memory, network bandwidth, operating system
queues, etc.

* Controller (feedback mechanism)
— Compares target with actual
— Launches or terminates VMs
* Controller is both reactive and proactive

— Layer controllers that run periodically (short term
planning)

— Reactive behaviour through actions for different resource
types

— Predictors attempt to estimate future utilization

— Multiple predictors — with the use of a selector to choose

Autoflex Bredictors Controller
Utilization " Projected
Data Layer’s Predictor Utilization
Monitor ———> ———> layer’s Controller
P Selector
1
Collected Utilization Data Scaling (start / stop VM instances) l,
Managed Infrastructure Service B
NN R ————— 1
! Layer #1 :
) 1
: VM #1 VM #2 VM #3 VM #4 :
H Large Large Large Large :
- = — L —— = i — —— . i
I m————————————— 3
Service A i Layer #2 j-:
1 1
vma [[vmez |[ vmas [|[: KRS e |
small || small || small || Micro | |_Micro !
VM Cluster #1 “ VM Cluster #2

“Autoflex: Service Agnostic Auto-scaling Framework for 1aaS Deployment Models”

Fabio Morais, Francisco Brasileiro, Raquel Lopes, Ricardo Araujo, Wade Satterfield, Leandro Rosa

IEEE/ACM CCGrid 2013, Delft, The Netherlands

5/31/14
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AutoFlex ... predictors

* Keep CPU Utilization < 70%
Predictors used:

auto-correlation (AC),
linear regression (LR),
auto-regression (AR),

auto-regression with integrated moving average (ARIMA),

and

the previous utilization measured (dubbed Last Window,
or simply LW)

Ensemble using all of the above

Metrics:

Hard violations: capacity not enough to handle demand

Cost: auto scaling vs. over provisioning (knows highest
demand and statically allocates resources)

AutoFlex ... predictors

Hard violations Cost

EN Lw
13% 8%
AR
18%

LR
64%
ARIMA'
39%

AC
10%

Based on 265 traces from HP users

5/31/14
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YinzCam (CMU)

YinzCam is a cloud-hosted service that provides sports
fans with

* real-time scores, news, photos, statistics, live radio,
streaming video, etc.,

* on their mobile devices

* replays from different camera angles inside sporting
venues.

* YinzCam'’s infrastructure is hosted on AmazonWeb
Services (AWS) and supports over 7 million downloads
of the official mobile apps of 40+ professional sports
teams and venues within the United States.

https://www.cmu.edu/homepage/beyond/2008/spring/yinz-cam.shtml

YinzCam — demand profile

[} hockey game
oo
©
o
[
£
o
T
w
[-3
Q
<<
Y
o
w
B
2
>
Sun Apr 15 Mon Apr 16 Tue Apr17 Wed Apr 18 Thu Apr 19 Fri Apr 20 Sat Apr 21

week-long workload for a hockey-team’s mobile app, illustrating modality and spikiness. The
workload exhibits the spikes due to game-day traffic during the three games in the
week of April 15,2012

5/31/14
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Auto Scaling strategies

YinzCam provides an example of various
streaming application requirements
Some events are predictable:

— Potential workload during a game (historical data) —
“in-game” vs. “non-game” mode

— Some events are not (e.g. likely demand during a
particular gaming event)

Other scenarios:

— Unpredictable scale up (e.g. observed phenomenon
trigger in a sensor network)

Generally: over provision during game event

Scale up/down policies

CPU usage threshold - trigger new VM
— YinzCam (30% CPU usage over 1 minute)
Aggressive scale up, cautious scale down
— Overcome VM allocation overheads

— Potential for oscillation in the system (at next CPU
check)

Example policies:
— Multiplicative Increase, Linear Decrease
— Linear Increase, Multiplicative Decrease

Inspiration from TCP and other congestion
control mechanisms

5/31/14
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Figure 4: The average latency of our three system config-
urations throughout a 3-hour production workload trace.
The workload was recorded during a hockey-game in
April 2012.

“To Auto Scale or not to Auto Scale”,
N. D. Mickulicz, Priya Narasimhan, Rajeev Ghandi, ICAC 2013 (USENIX), San Jose, CA

Dynamic SLAs

* Applications on multi-tenancy infrastructure

— With changing application demands (e.g. must
respond to unpredictable events)

* Prevent “over specification” of service level
demands

— User might make an initial assessment of likely
demand (“first stab” at likely app. behaviour)

* Provide SLAs that are “machine generated”

— Based on predictive usage between application
classes

— Offers made to users based on “likely” demand profile

— May utilise resource throttling strategies (cgroups in
Linux — control groups that limit resource
consumption)

5/31/14
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Dynamic SLAs in OpenStack

[ New SLA Components

S
/User \ [ Existing Nova Components
[ Existing Ceilometer Companents
WS Ag SLA Request VMI & SLA Sl AlCeilameter Components
Nova-AC Nova-AP| Nova-Scheduler
[ Ws-Ag, WS-AN ¢_| | SLA —{ o 1
..-.s.mu.m»mvm] !
Nova Nova
Cloud e SLA/Anomaly C?\ng“w C%nzum
Total Allocated & :"Nu Monitor ode ode
vaila ali = = ~
Capacity ‘C\::)IL::!::: hgration § Ceilalcgroup t+—— ! Ceilo/cgroup
e ;. Enhanced Agent Agent
4 Cielometer

% l l

L Ceilometer Event Bus (RabbitMQ) l

Client

Viglation Responses:

« Operator Notification

+ Application call-back

+ Throttle application (cgroups)
+ Load Migration

*+ SLA renegotiation

Ceilometer

Ceilometer Colector |
Database J

“A Research and Development Plan for Dynamic Service Level Agreements in OpenStack”,
Craig Lee, ITAAC workshop alongside IEEE/ACM Utility & Cloud Computing Conf, Dresden,

December 2013

Admission Control

* Reaching QoS of applications is often strongly driven
by admission control strategies
* Admission control in large-scale cloud data centres
influenced by:
— Heterogeneity = performance/efficiency
— Interference = performance loss from high interference
— High arrival rates = system can become oversubscribed
* Paragon and ARQ could be two approaches
— Paragon: heterogenity and interference aware scheduler

* ARQ: Admission control strategy.

— Use of Paragon to classify applications into multiple
request queues

— Improve utilisation across multiple QoS profiles
“ARQ: A Multi-Class Admission Control Protocol for Heterogeneous Datacenters”,

Christina Delimitrou, Nick Bambos and Christos Kozyrakis
https://www.stanford.edu/group/mast/cgi-bin/drupal/system/files/2013.extended.arq_.pdf

5/31/14
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Paragon (Stanford)

Classification: ~Netflix Challenge
Small information signal about new application
Leverage system knowledge about previously scheduled applications
Collaborative filtering techniques (SVD + PQ reconstruction with SGD)

-> Scheduling recommendations: Heterogeneity + Interference

Server Platform Caused (¢) Tolerated (t)

Greedy Scheduler:

Co-schedule workloads with no/small interference on suitable hardware platforms
- preserve QoS & improve utilization

Learning
Heterogeneity 5
Apps >
L) App Scheduler f

Classification

v

Interference

System State Metrics

Sources of Interference (Sol)
benchmarking

Targeted microbenchmarks of tunable intensity that
create contention in specific shared resources

Introduce contention in: processor, cache hierarchy
(L1/L2/L3 & TLBs), memory (bandwidth and capacity),
storage

Run application concurrently with microbenchmark

— Progressive tune up intensity until QoS violation

— Associate a “sensitivity score” with application (i.e.
sensitivity to interference)

Similarly, Sensitivity to running application
— Impact of running application on micro-benchmark

— Tuning up application intensity until 5% degradation on
benchmark (compared to execution in isolation)

5/31/14
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ARQ: Application-aware admission control

* Divide application workload into queues, using
— Interference tolerance information
— Heterogeneity requirement

* Trade off between: (i) waiting time; (ii) quality of a
resource

* Prevent highly demanding applications from blocking
easy-to-satisfy applications

* Understand when a QoS violation is “likely” — re-divert to
a different queue

* Interference function (used to derive a resource quality):
— Interference server can tolerate from the new application (c)

— Interference new workload can tolerate from existing
applications (t)

ARQ: Application-aware admission control

Resource Quality: Degree of tolerated and caused interference in various shared
resources (higher quality means more demanding application)

For applicationi: Qi = ch For server; O = Z”‘
k k

Resource quality-aware queueing: Applications are queued based on the resource
quality they need

Multi-class admission control: Each class corresponds to apps with specific range of
Qi 2 dispatched to servers with the required Qj

Preserving QoS: Applications can be diverdyd to different queues to preserve their
QoS (when waiting time is high)

5/31/14
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Disturbance Benchmarking

Tolerance of an application to failure
Benchmark injects:

— Workload & Disturbance into System Under Test
— Measures response

Disturbance:

— Events, faults, etc

— Changes QoS profile of the application

Aim to measure “resilience” not availability
— Approach similar to DBench-OLTP

Ability to adapt in the context of a disturbance in
the system

Key Aspect: Injecting Disturbances

= Each disturbance is injected in an Injection Slot while the workload

is applied
| Injection Slot N (30 minutes iong) |
[ |
Disturt System Detects & Repair Action Disturba
Injecte Recovers Applied
L Injection Interval i Detection Interval | Keep Interval KL
! I | 1
k Steady State e Detection Fllecc:.-‘?v’_;' | Recovery | Steady state

= Injection slots are run back-to-back, preceded by an optional Startup
Interval for ramp-up

= For disturbances that require human intervention to recover:
The detection interval is replaced by a fixed, 10-minute time penalty
— Shorter interval for system that auto-detects but requires manual recovery
— A scripted Repair Action is applied after the detection interval

From Aaron Brown and Peter Shum (IBM)

5/31/14
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Disturbances Injected

= Benchmark capable of injecting 30 types of disturbances

— Representing common expected failure modes, based on internal

expertise, data, and customer survey

Disturbance types

— Attacks (e g. runaway query, load surge, poison message)

— Unintentional operator actions (e.g. loss of table/disk, corrupted data file)

Insufficient resources / contention (e.g. CPU, memory, I/O, disk hogs)

— Unexpected shutdowns (e.g. OS shutdown, process shutdown)

— Install corruptions (e.g. Restart failures on O3, DBMS, App Server)

= Targeted at OS, all middleware and server tiers, and application

From Aaron Brown and Peter Shum (IBM)

Top Customer Pains Overall

Customer Pain

Hang failure of a server: database (DBMS)

Application-related hangs: internal application hang

Leaks: memory leak in user application

Database-related data loss: storage failure affecting database data

Restart failure of operating system on: database (DEMS) node

CPU resource exhaustion on: database (DBMS) node

Miscellanecus hang failures: hang caused by unavailability of remote resource
(e.g., namefauthentication/directory server)

Miscellanecus Restart Failures: orphaned process prevents restart

Restart failure of server process for: database (DBMS) node

Restart failure of operating system on: application server node

Surges: load spike that saturates application

Mizcellanecus stops: Unexpected stop of user application

Database-related data loss: loss of an enfire database file

Application performance affected due fo: parameter setting on database

Useful to compare
this with performance
benchmarks that

we are much more
aware of

Compare with automated
testing mechanisms

From Aaron Brown and Peter Shum (IBM)

5/31/14
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Metrics for Quantifying Effects of Disturbances (1)

= Metric #1: Throughput Index
— Quantitative measure of Quality of Service under disturbance
— Similar to typical dependability benchmark measure
— Computation for disturbance i:

Throughputlndex, = P;/ Py,.,
where

P, = # of txns completed without error during disturbance injection interval i
P,,.. = # of txns completed without error during baseline interval (no disturbance)

— Range:0.0to 1.0
« Anything below 0.9 is pretty bad
— Average over all disturbances to get final score

From Aaron Brown and Peter Shum (IBM)

Metrics for Quantifying Effects of Disturbances (2)

= Metric #2: Maturity Index
— Novel, qualitative measure of degree of Autonomic capability
— Each disturbance rated on 0 — 8 point scale aligned with IBM’s Autonomic Maturity model

Maturity Level | Brief Description Points
Basic IT staff relies on reports, docs, and manuals to manage individual IT components 0
Managed IT staff uses management tools providing lidated IT 1
Predictive Components monitor and analyze themselves and recommend actions ro IT staff 2
Adaptive IT components monitor, analyze, and take action indspendently and collecrively 4
. T collecrively & ically zelf- ding to business policy 8

+ Non-linear point scale gives extra weight higher maturity

— Ratings based on 90-question survey completed by benchmarker
- Evaluate how well the system detects, analyzes, and recovers from the failure
Example: for abrupt DBMS shutdown disturbance:
“How is the shutdown detected?
A_The help desk calls operators to tell them about a rash of complaints (0 points)
B. The operators notice while chserving a single status monitor (1 point)
C. The autenomic manager notifies the operator of a possible problem (2 points)
D. The i initiates p analysis (4 points)”
— Overall score: averaged point score / 8
Range: 0.0to 1.0

From Aaron Brown and Peter Shum (IBM)

5/31/14
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Example Results: Detailed Disturbance Response

= Comparison of throughput over injection slot for 2 disturbances:

&0
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( | 3 y |
| i/
g i
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2 /
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%
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o
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Tme (s

From Aaron Brown and Peter Shum (IBM)

Sample throughput graph for a single fault

Warmup ends; test slot begins Recovery script is executed
: wf{lmtwmf@w,ﬂ* Wﬁ"i'k’ml'f‘l.r""ﬂr'-"ill*q r““’|l’r(‘i"1 il
E . ’] ﬁ}'#ﬂ’ﬁw'MJ&*‘H\\W{W&‘ d
Fa

@ 00 u 1500 2000 2500 00
‘ﬂ\ Time (8] \
Fault is injected; Fault slot ends;
Start measuring throughput Stop measuring throughput

From Aaron Brown and Peter Shum (IBM)
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Sample graph showing throughput across all four faults

Test phase: Page elements per second

1200
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Deadlock on DBEMS MNetwork down on App Server

From Aaron Brown and Peter Shum (IBM)

Configuration Management

Dynamically deploy pre-configured virtual machine
instances

— Replicate across multiple servers

— Deploy a “reference” configuration across clients
CHEF — widely used configuration management tool
(Saas platform, Ruby-based)

— Deploy load balancers, monitoring tools (Nagios) along
with others (sharing “cookbooks” and “recipes”)

— Apache Licence (with Apache SOLR (search engine),
CouchDB)

CF Engine

— Open source (GPL Licence)

— Enables much more complex configurations (-ve)

— Uses a remote agent (also supports a monitoring deamon)

http://www.slideshare.net/jeyg/configuration-manager-presentation

5/31/14
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Configuration Management

* Amazon CloudFormation another option
— Create & manage AWS instances --

http://aws.amazon.com/cloudformation/

— Provides pre-defined set of templates (WordPress,
Joomla, Windows Server, Ruby on Rails, etc) --

http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

* CloudSoft’s Brooklyn

http://www.cloudsoftcorp.com/communities/

— Open source + support for policies
— Application-level rather than instance-level support

— Enables autonomic adaptation of a deployed
configuration (e.g. auto-scaling policy, replacer/
restarter (high availability) policy)

Stream processing architectures

* Systems that must react to streams of data produced

by the external world
e Stream data source can vary in complexity and type

* Availability of streamed data can also be managed
through an access control mechanism

* Usually operate in real time over streams and
generate in turns other streams of data enabling:

(i) passive monitoring: what is happening, or

(i) active control: suggesting actions to perform, such
as by stock X, raise alarm Y, or detected spatial
violation, etc.

* Stream processing can also lead to semantic
annotation of events

5/31/14
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Difference from “standard” databases

* Queries over streams are generally “continuous”
» executing for long periods of time
* return incremental results

* permanently installed —i.e. does not terminate after first
execution

Performance metrics should be based on response time rather
than completion time

* Data is not static — as new data is constantly arriving
into the system
— Same query at different times leads to different results (as
long as new data enters the system)
* Typical operations in StreamSQL

— SELECT (execute a function on a stream) and WHERE
(execute a filter on a stream) operators

— Stream merge and join
— Windowing and Aggregation

Analyses of performance

* Response Time
— Average or maximum time between input arrival into the
system, and the subsequent generation of a response
* Support (query) Load

— What is the size of the input (number of data elements) a
stream system can process while still meeting specified
response time target and correctness constraints

* Correctness is time dependent
— Same query at different times = different outcomes

— Potentially multiple correct answers depending on
response time

5/31/14
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Adaptive Streams

* Three key issues:
— what to remember or forget,
— when to do the model update, and
— how to do the model update

* For streaming — these can be mapped into:
— the size of the window to remember recent examples
— methods for detecting distribution change in the input
— methods for keeping updated estimations for input

statistics
wyn a Estimation
All “x” are real valued, estimator: current ¥
value of “x” + variance (each “x” independently — Estimator N
drawn arm
) Change Detector

Estimator: linear, moving average, Kalman filter

Tp=(1—a)iy | +a-x;.

[The linear estimator corresponds to using @ = 1/N where N is the width

of a virtual window containing the last N elements we want to consider.

Adaptive Sliding Windows (ADWIN)

* Window size — reflects time scale of change
— Small: reflects accurately the current distribution

— Large: many examples are available to work on, increasing
accuracy in periods of stability

* Window content is used for

— detecting change (e.g., by using some statistical test on different sub
windows),

— to obtain updated statistics from recent examples,
— to have data to rebuild or revise the model(s) after data has changed

* Adaptive Windowing:

— Whenever two “large enough” sub windows of W exhibit
“distinct enough” averages = corresponding expected
values are different = drop older portion of window

5/31/14
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Cloud-based stream processing

e Use of Cloud resources to:

— Execute stream processing operators (may be in-
network)

— VM per operator (dynamically allocated to
overcome peak workloads)

» Operator chaining within/across Cloud
systems
— Scale out
— Fault tolerance

» Operator chaining = processing pipelines
— Similarity with workflow systems

GENI (OpenFlow and MiddleBox)

* L2/L3 Technology to permit software-defined
control of network forwarding and routing

* Integration of specialist network “appliances’
to support specific functions
— These could be user defined
— Linux hosting

* MiddleBox: In-network general-purpose
processors fronted by OpenFlow switches

* Integrate services from multiple Clouds

— Allocation of networks and “slices” across
different resources

)
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In-transit Analysis

4
1
!

v

Delay (QoS parameter) .

P)

* Data processing while data is in movement from source to
destination

* Question: what to process where and when
* Use of “slack” in network to support partial processing
* Application types:

— Streaming & Data Fusion requirement

In-transit Analysis ... 2

Shared Cluster

* Data processing while data is in movement from source to
destination

* Question: what to process where and when
* Use of “slack” in network to support partial processing

5/31/14
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Workflow level Representation

0o AU naa

Proc. Unit: t, t;, ADSS: Proc. Unit: t,, t,, t,3

tZl,tZZ

mapping mapping

ADSS
 ————

buffer

In transit '

‘ Resourcer;: t;; t;, ‘

local storage

B Bandwidth

)\ Input rate ADSS model &

1 6 Consumer’s data rate
simulator

L Controlled output rate () Disk transfer rate 70

Rafael Tolosana-Calasanz et al. “Revenue-based Resource Management on Shared
Clouds for Heterogenous Bursty Data Streams”, GECON 2012, Springer

Approach & focus

Adaptive infrastructure for sensor data analysis

* Multiple concurrent data streams with SLA

* Variable properties: rate and data types; various processing models
¢ Support for in-transit analysis, enforcing QoS

¢ Support for admission control & flow isolation at each node

¢ In case of QoS violation, penalisation

¢ Architectural components
e Business rules for SLA Management : Actions to guarantee QoS & maximize

revenue

From Jose Banares (University of Zaragoza)
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From Jose Banares (University of Zaragoza)

System Architecture

Event Processing Network Stage
Data injection rate

g = "O——e—0F)

Event processing Service Node

-
Traffic Shaping [~ QoS Provisioning _.-.. ADSS [
-

Token Bucket > %\ 2
*[input uttr 1 B B

Token
H-A-""'ﬂamn Shaping Local
Storage

'
5 <2 SLA SLA Manager Ea

* 3 key components / node: Token Bucket, Processing Unit & output streaming

From Jose Banares (University of Zaragoza)

Token Bucket (shaping traffic)

slope R, S(t)

slope R A(t) slope R L7
E(t
R tokens/s AW z ®
‘ \ bC .
C-R
b i
tokens d
v,
Ba
—_— - -
C bps time time

A(t): Amount of data arriving up to time t

Two key parameters of interest:

¢ R:Also called the committed information rate (CIR), it specifies how much data can be
sent or forwarded per unit time on average

* B:it specifies for each burst how much data can be sent within a given time without
creating scheduling concerns
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Token Bucket (shaping traffic)
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From Jose Banares (University of Zaragoza)

Data injection rate

SLA

From Jose Banares (University of Zaragoza)

Workflow
- Stages
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Resource addition based on buffer occupancy
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Autonomic Computational Science

* Enable automated tuning of application behaviour

— Execution Units, Communication, Coordination, Execution
Environment

— Relation to “Reflection” and Reflective Middleware + Use of
intercession on a meta-model + domain-model

— Developing a meta-model is often difficult
* Tuning may be:

— Centralized

— Consist of multiple control units

— Tuner external to the application

* Comparison with Control systems & MDA
— Multiple, often “hidden” control loops
— Inclusion of run-time configuration parameters at design time
— Model centric view that takes deployment and execution into account

Shantenu Jha, Manish Parashar and Omer Rana,
Self-adaptive architectures for autonomic computational science
Proceedings of the First international conference on Self-organizing architectures ,
pp 177-197, LNCS 6090, Springer Verlag 2010.
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Autonomic Computational Science

Conceptual Framework
A conceptual framework that comprises of the following elements:

@ Conceptual Architectures
@ Elements of the Architecture

o Application-level Objective(s)

o Mechanism
o Strategy

@ Use in applications driven by the following questions:

@ Which strategy is best for a given application objective? What role
do application characteristics play in determining such a strategy?

@ Which mechanism can be used to implement autonomic behaviour
— and at which part of the application lifecycle?

o What support and implementation tools can be used to achieve this
autonomic behaviour — and can these be shared across

applications?

Tuning of application & resource manager

param eters
Resources
Results E
Application ) Resource /
Inputs

Parameters

Elj =

Manager i@
El

Tuning
Parameters

.

Tuning

Autonomic {
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Tuning by application
Resources

Results
“— | Resource /

Application —_—
— Inputs Manager \E

El
Tuning
Parameters

Autonomic {
Tuning Ej

Historical (monitoring) data

Tuning
Strategy

@ Resource reservation to achieve particular QoS-criteria

@ Dynamic analysis of data stream from a scientific instrument — may also involve
analysis of video/audio feeds

Application

Thas
{Application Objectives}
e.g. load bala\ncing

/

achieved through /~ A ; ;
Q/, \og;anlsed using
{mechanisms} .prescrlbe {strategies}
e.g. change DAG fan-in/fan-out e.g. work
adaptation

@ Application-level Objective (AQ): User identified application requirement, e.g.
increase throughput, reduce task failure, load balance, etc

@ Mechanism: action used by application or resource manager to achieve AQ —
mechanism m: ({m;}, {mf}, {mo}, {m3}), e.g. file staging:

e {m;} and {m,}: file references before/after staging process
e {mf}: input events that trigger start of file staging
e {mg}: output events after file staging is completed.

@ Strategy: consists of a collection of mechanisms — manual or dynamically
constructed by an autonomic approach

5/31/14
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Spatial, Temporal and Computational Heterogeneity and
Dynamics in SAMR

Temperature (K) e —
Spatial
Heterogeneit

Temperature
0.4ms Temporal
v Heterogeneity
Simulation of
OH Profile

combustion based
on SAMR (H2-Air
mixture; ignition via
3 hot-spots)

Courtesy: Sandia National Lab

Autonomics in SAMR

* Tuning by the application
— Application level: when and where to refine

— Runtime/Middleware level: When, where, how to partition and
load balance

— Runtime level: When, where, how to partition and load balance
— Resource level: Allocate/de-allocate resources

* Tuning of the application, runtime

— When/where to refine

— Latency aware ghost synchronization
Heterogeneity/Load-aware partitioning and load-balancing
Checkpoint frequency

— Asynchronous formulations

5/31/14
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I'wo epochs
Jul/Aug 05 & Oct/Nov 05

From: G. Bruce Berriman

Montage

Instrument Bands (um) Field-of -View
(arcmin)
IRAC 35,45,58,80 —rhe
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70 525 x 2.6
160 0.5 x 0.5

Images Courtesy Margaret AMeixner (P1)
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Montage:

Tuning Mechanisms

Vectors

Mechanisms

Coordination

Adapt DAG structure,
Change Fan In/Out, Cluster Nodes,
Change Task Granularity

Communication

File staging, File aggregation,
File splitting, File indexing

Execution
Environment

DAG execution (Mapping/Scheduling),
Resource Selection/Management,
Task re-execution,

Task migration, Storage management,
File caching, File distribution,
(multicast, broadcast), File
re-transmission, Checkpoint/restart

Montage:
Tuning Strategy
Application | Autonomic Strategy
Objective
Load 1. Adapt task mapping granularity
Balancing based on system capabilities/state

File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching,
Storage Management

2. Change fan-in/fan-out

DAG structure modification

File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching
Storage Management
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Montage:
Tuning Strategy
Application | Autonomic Strategy
Objective
Handling 1. Reschedule the task on
Task a different existing resource
Failure File staging
Task rescheduling, Task migration
2. Reschedule the task
On a new resource
Resource discovery and allocation
Task rescheduling
File staging (migration/replication)
3. Roll back from checkpoint
on the same resource
Checkpoint interval and granularity
Montage:

Tuning Strategy
Application | Autonomic Strategy
Objective
Improving 1. Increase fan out
Throughput | Task rescheduling, Task migration

File staging, File splitting/merging
DAG structure modification

File distribution and caching,
Resource allocation

2. Change Scheduling Approach
File distribution (staging, merging,
splitting, replication)

Task rescheduling and mapping
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Concluding comments

* Autonomic strategies:

— Often rooted in control systems (generally closed-
loop feedback control)

— Can use a variety of control strategies — which
include use of machine learning

* Formulating the problem often difficult
— Multi-criteria optimisation
— Often multiple, difficult to separate control loops

* Monitoring infrastructure choice is key

44



