5/31/14

Autonomic Clouds
Part Il

Omer Rana (Cardiff University, UK)
Manish Parashar (Rutgers University, USA)

Defining the landscape

* Analysis of existing published work
— Give potential research directions
* Various uses of autonomics — will focus on:
— Auto scaling and elasticity
— Streaming analytics
— Integrating autonomics into applications
* Integrating autonomics with
— Existing Cloud middleware
— Distributed Cloud landscape (e.g. GENI Cloud)

Cross layer Intelligence

@
Cross-layer
Observer

o¢

//Q ' App/Workload Observer
¥ App/W e Application [emserl el
4 C.ontroll y N \ Application req. profiles

—eeeeeeee
E Virtualization Observer
Virtualization T 5]

VM efficiency

B —
k‘\.o Resources Observer

Resources [5msord R

Resource performance

P
E Phys. Environment Observe

Environ. Physical

Sfontroller 4~ Environment Environment prediction

Cross layer Intelligence

* Applications can exhibit dynamic and
heterogeneous workloads

— Hard to pre-determine resource requirements
* QoS requirements can differ across multi-
tenancy applications
— Batch vs. real time, throughput vs. response time
* Integrating local resources with Cloud
provisioned resources
— Cloud “bursting” (when and for how long)
— Data sharing dynamically between the two
— Cost implications for long term use

5/31/14

From Chenyang Lu (Washington Univ. in St Louis)

Links with Control theory

Applying input to cause system variables to conform
to desired values — often a “set” or “reference” point
— E-commerce server: Resource allocation? = T_response=5 sec
— Embedded networks: Flow rate? = Delay = 1 sec
— Power usage: Energy? = Consumption < 250Watts

Provide QoS and related guarantees in open, unpredictable
environments

Various modelling approaches:

— Queuing theory (very popular) — no feedback generally in queuing
models; hard to characterise transient behaviour overloads

— Other approaches: Petri nets and Process algebras
— Often a design/tune/test cycle — repeated multiple times

From Chenyang Lu (Washington Univ. in St Louis)

Open-loop control

Compute control input without continuous variable
measurement

— Simple

— Need to know EVERYTHING ACCURATELY to work right

* E-commerce server: Workload (request arrival rate? resource
consumption?); system (service time? failures?)

Open-loop control fails when

— We don’t know everything

— We make errors in estimation/modeling
— Things change

5/31/14

From Chenyang Lu (Washington Univ. in St Louis)

Feedback (close-loop) Control

Controlled System

Controller

control control J | manipulated

- » Actuator
func‘ty nput "L | variable
error
) [.] |[sample
G‘)‘ Monitor | con}rolled
r - L | variable
reference

From Chenyang Lu (Washington Univ. in St Louis)

Feedback (close-loop) Control

* Measure variables and use it to compute control
input
— More complicated (so we need control theory)

— Continuously measure & correct
* Ecommerce server: measure response time & admission control
* Embedded network: measure collision & change backoff window

* Feedback control theory makes it possible to control
well even if:
— We don’t know everything
— We make errors in estimation/modeling
— Things change

5/31/14

From Chenyang Lu (Washington Univ. in St Louis)

Control design methodology

Modeling
o
analytical Contr.oller =P Control algorithm |
Design | -———---—- ——————- !
system IDs .

I

. Fe——— n
Requirement Performance Specifications > TTERT L
Analysis | LS T I

From Chenyang Lu (Washington Univ. in St Louis)

System Models

Linear vs. non-linear (differential eqns)
Deterministic vs. Stochastic
Time-invariant vs. Time-varying

— Are coefficients functions of time?
Continuous-time vs. Discrete-time
System ID vs. First Principle

System Goals:
— Regulation (e.g. target service levels)

— Tracking (measuring deviation from a target, e.g. change
H#VMs)

— Optimisation (e.g. minimize response time)

5/31/14

VM consolidation

A commonly referenced problem in

Cloud computing

— Server cost the largest contributor to
overall operational cost

Data centers operate at very low

utilization

— Microsoft: over 34% servers at less than
5% utilization (daily average). US
average 4%.

VM Consolidation increases utilization,

decreases idling costs

However VM consolidation can cause
interference in the memory hierarchy

Core 1 Core 2

Memory

(e.g. due to sharing of cache between :
. Hierarchy
cores or memory bandwidth) P;
t—— | Interference
is here

VM Consolidation: PACMan

How much will each VM degrade when placed

with other VMs?

Which and how many VMs can be placed on a

server whilst still maintaining performance?

PACMan (Performance Aware Consolidation

Manager)

— Minimise resource cost (energy usage or #servers)

— Use of an approximate (computationally efficient)
algorithm

Differentiate between:

— Performance vs. resource efficiency (e.g. batch mode)

— Eco mode: fill up server cores (minimise worst case
degradation e.g. MapReduce — minimise time of worst
case Map task)

5/31/14

— : PACMan'

o : I

f ! UZIIG I Consolidation i

= Sl Engine Algorithim |

> v I 1

- € ! :

eS|] :
o I

2l |&| ' |Conservatively Hosting Racks i

3 T : Packed Servers |

2 ! EEEEEE :

o | UL :

[TR v Y _

“, n “ o n

Parameters considered: “n” VMs, on “m” machines with “k” cores
Consider a “degradation” parameter as new VMs are added to a machine —identify an
optimisation goal —e.g. W . - .

Goal: Minimize max maxd;" (S; is the set of VMs

1<ism je€S;
on server i)

Alan Roytman, Aman Kansal, Jie Liu and Suman Nath, “PACMan: Performance Aware
Virtual Machine Consolidation”, Proceedings of ICAC 2013, San Jose, USA (USENIX/ACM)

PACMan — Approach

» Start from an arbitrary initial schedule

* For all ways of swapping VMs, go to the
schedule with smallest sum of maximum
degradations

* Limit total number of swaps to achieve

convergence
{ABCHD.EF}

{AECHDB,F}

5/31/14

5/31/14

Elasticity

* One of the key “selling points” of Cloud
systems
* Various approaches possible:

— Often historical information useful (response
times, queue lengths, arrival rates and request
demands)

— Long-term, medium-term and short-term planning
— VM allocation and placement

* Reactive vs. proactive approaches

Dynamic VM allocation

* Understanding “Elasticity”

the degree to which a system is able to adapt to
workload changes by provisioning and de-
provisioning resources in an autonomic manner,
such that at each point in time the available
resources match the current demand as closely as
possible.

* Can elastic provisioning capability be
measured

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

Dynamic VM allocation

* Scale up speed: switch from an underprovisioned
state to an optimal or overprovisioned state.

|II

— Can we consider “tempora
takes place

aspects of how scaling up

* Deviation from actual to required resource
demand

— Measure deviation to influence the overall process

* Role of predictive allocation for “known” events
— i.e. know in advance how many VMs to allocate

Scaling Influences & Strategies

* Reactive

— Observed degradation in performance over a
particular time window

e Trace-driven

— Based on a short-term prediction

— Could make use of a “cyclic” workload pattern
* Model-driven

— Use of a queuing/Petri net/dynamic systems
model

— Often parameters “observed” and tuned off line

5/31/14

An Example
#eqfec Service Level Agreement (SLA):
workload intensty E.g.: resp. time < 2 sec, 95%
Resource Demand:
Minimal amount of #VMs required
‘ to ensure SLAs.
tme™
#/Ms
o 4 NN\
. / _J— resource demand
7 7/, underprovisioning
s I resourde supply
27 &\\:ovetpmvisioning
e

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

Comparing allocation

#req/sec. #req/sec.
+ workload intensity 4 workload intensity
ﬁme= fme=
#/Ms #/Ms
g A NN o A
7
1 Y ° % N
4 N 4 %
NN i
2 systemA 2 vz systemB
ﬁme= t'me=

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

5/31/14

10

Elasticity Metrics

A ™ resource demand
g NN 7/ underprovisioning
‘0 N __[resource supply
g NN N\ overprovisioning
g B, \\\
A D
L
BS
7 X
: N
N e
_A'j tme *
™M Jr L} J

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

Elasticity Metrics ... 2

A |Average time of switch from an underprovisioned to an optimal or overprovisioned state

[1rahmen_neu folge}average speed of scaling up
YA Accumulated time in underprovisioned state.
U Average amount of underprovisioned resources during an underprovisioned period.
>U Accumulated amount of underprovisioned resources.

B,YB,0,Y.0 correspondingly for overprovisioned states

Y 2.0 Average precision e
Pu:T"Pd:Tr of scaling up / down E | - meomensey

T = total evaluation duration

1 1 Elasticity metric
B= 555" 50 for scaling up / -
down £ _

“Elasticity in Cloud Computing: What It Is, and What It Is Not”
Nikolas Herbst, Samuel Kounev, Ralf Reussner, ICAC 2013 (USENIX)

5/31/14

11

5/31/14

H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, “AGILE: Elastic distributed resource scaling
for Infrastructure-as-a-Service”, Proceedings of ICAC 2013, San Jose, USA (USENIX/ACM)

AGILE

Overload starts Overload stops

SLO violation feedback

____________________________________ |
o 1 t
Resource usage, l }

o . 1
monitoring

Resource demand Resource pressure
prediction modeling

1

1

1

1

1

1

1

1

L 1
1

Future resomW Resource to i
demand maintain |
1

1

1

1

1

1

1

1

1

1

Server pool prediction

When to scale | How many VMs

add/remove

Server pool scaling manager 1

AGILE

* Medium term predictions using Wavelets

* Use of an “adaptive” copy rate
— Pre-copy live VM based on prediction
— Avoids performance penalty

— Does not requiring storing and maintaining VM
snapshots

— Can be undertaken incrementally — therefore avoids
“bursts” in traffic when submitting an entire VM (e.g.
compared to “cold cloning”

* Supports post-cloning auto-configuration

12

Supporting Elastic Behaviour

* Variety of approaches possible:

* Modelling decisions as a Markov Decision
Process (TIRAMOLA successfully resizes a
NoSQL cluster in a fully automated manner)

* Use of classifier ensemble

* Machine learning strategies (e.g. use of neural
networks)

* Rule-based (trigger-driven) approaches

“Automated, Elastic Resource Provisioning for NoSQL Clusters Using TIRAMOLA”
Dimitrios Tsoumakos, loannis Konstantinou, Christina Boumpouka, Spyros Sioutas,
Nectarios Koziris, CCGrid 2013, Delft, The Netherlands

Hybrid Approaches

* Use of different techniques for scaling up vs.
scaling down
— Reactive rules for scaling up, regression-based
techniques for scaling down

— Reactive rule: queue length of waiting requests
(but could be other criteria)

— Predictive assessment (use of queuing models) to
dynamically trigger new VMs

5/31/14

13

TIRAMOLA

TIRAMOLA N

1

Decision Making) .
|

Resize Action |

|

Orchestrate Cloud |
Cluster Management /!

|

Cluster Adjust !
Coordinator resources_,

Manage Add/delete i
NoSQL nodes Vs

@ﬁ LOM: Virtual NoSQL Cluster iCloud Provider |
Fig. 1. Architecture of the TIRAMOLA elasticity-provisioning framework.

TIRAMOLA

Decision Making

— cluster resize action according to the applied load, cluster
and user-perceived performance and optimization policy

— Modelled as a Markov Decision Process (look for best
action w.r.t. current system state)

— User goals defined through a reward function (mapping of

optimisation goals)
Monitoring via Ganglia
— Server + user metrics (via gmetric spoofing)
Cloud Management
— Via euca2ools (Amazon EC2 compliant REST library)
Cluster Coordination
— Via remote execution of shell scripts

5/31/14

14

TIRAMOLA

Formulates resize decisions as a MDP

— State defined as #V/Ms, CPU usage, memory

— Actions: add, remove or do-nothing (no-op)

— Actions limited by a quantifier, i.e. add_2, add_4
(restrictions on these quantifiers)

— Transition prob. — based on if state is permissible or not
(e.g. can exact number of VMs be added) — can be
generalised to partial additions

— Reward function — r(s): “good ness” of being in state (s);
r(s) = f(gains, costs)

MDP enables:

— No knowledge of dynamics of environment is assumed

— Learnin real time (from experience) and continuously
during the lifetime of the system

TIRAMOLA

Use of Q-learning (a type of reinforcement
learning)

Q(s,a) = Q(s,a) + alr(s') + ymax Q(s',a’) — Q(s, a)]

Base calculation of r(s) on a particular arrival rate
(of requests) and certain number of VMs

Collect results into a table — and use historical
data to identify action and s’ (given s)

r(s) = f(latency, VMs)

5/31/14

15

AutoFlex

* Use of monitoring to collect:

— CPU, memory, network bandwidth, operating system
queues, etc.

* Controller (feedback mechanism)
— Compares target with actual
— Launches or terminates VMs
* Controller is both reactive and proactive

— Layer controllers that run periodically (short term
planning)

— Reactive behaviour through actions for different resource
types

— Predictors attempt to estimate future utilization

— Multiple predictors — with the use of a selector to choose

Autoflex Bredictors Controller
Utilization " Projected
Data Layer’s Predictor Utilization
Monitor ———> ———> layer’s Controller
P Selector
1
Collected Utilization Data Scaling (start / stop VM instances) l,
Managed Infrastructure Service B
NN R ————— 1
! Layer #1 :
) 1
: VM #1 VM #2 VM #3 VM #4 :
H Large Large Large Large :
- = — L —— = i — —— . i
I m————————————— 3
Service A i Layer #2 j-:
1 1
vma [[vmez |[vmas [|[: KRS e |
small || small || small || Micro | |_Micro !
VM Cluster #1 “ VM Cluster #2

“Autoflex: Service Agnostic Auto-scaling Framework for 1aaS Deployment Models”

Fabio Morais, Francisco Brasileiro, Raquel Lopes, Ricardo Araujo, Wade Satterfield, Leandro Rosa

IEEE/ACM CCGrid 2013, Delft, The Netherlands

5/31/14

16

AutoFlex ... predictors

* Keep CPU Utilization < 70%
Predictors used:

auto-correlation (AC),
linear regression (LR),
auto-regression (AR),

auto-regression with integrated moving average (ARIMA),

and

the previous utilization measured (dubbed Last Window,
or simply LW)

Ensemble using all of the above

Metrics:

Hard violations: capacity not enough to handle demand

Cost: auto scaling vs. over provisioning (knows highest
demand and statically allocates resources)

AutoFlex ... predictors

Hard violations Cost

EN Lw
13% 8%
AR
18%

LR
64%
ARIMA'
39%

AC
10%

Based on 265 traces from HP users

5/31/14

17

YinzCam (CMU)

YinzCam is a cloud-hosted service that provides sports
fans with

* real-time scores, news, photos, statistics, live radio,
streaming video, etc.,

* on their mobile devices

* replays from different camera angles inside sporting
venues.

* YinzCam'’s infrastructure is hosted on AmazonWeb
Services (AWS) and supports over 7 million downloads
of the official mobile apps of 40+ professional sports
teams and venues within the United States.

https://www.cmu.edu/homepage/beyond/2008/spring/yinz-cam.shtml

YinzCam — demand profile

[} hockey game
oo
©
o
[
£
o
T
w
[-3
Q
<<
Y
o
w
B
2
>
Sun Apr 15 Mon Apr 16 Tue Apr17 Wed Apr 18 Thu Apr 19 Fri Apr 20 Sat Apr 21

week-long workload for a hockey-team’s mobile app, illustrating modality and spikiness. The
workload exhibits the spikes due to game-day traffic during the three games in the
week of April 15,2012

5/31/14

18

Auto Scaling strategies

YinzCam provides an example of various
streaming application requirements
Some events are predictable:

— Potential workload during a game (historical data) —
“in-game” vs. “non-game” mode

— Some events are not (e.g. likely demand during a
particular gaming event)

Other scenarios:

— Unpredictable scale up (e.g. observed phenomenon
trigger in a sensor network)

Generally: over provision during game event

Scale up/down policies

CPU usage threshold - trigger new VM
— YinzCam (30% CPU usage over 1 minute)
Aggressive scale up, cautious scale down
— Overcome VM allocation overheads

— Potential for oscillation in the system (at next CPU
check)

Example policies:
— Multiplicative Increase, Linear Decrease
— Linear Increase, Multiplicative Decrease

Inspiration from TCP and other congestion
control mechanisms

5/31/14

19

| Baseline is
H .
\ “manual” scaling

/

~~~Bascline
Auto Scaling

——Optimized

Trace Time (s)

Figure 4: The average latency of our three system config-
urations throughout a 3-hour production workload trace.
The workload was recorded during a hockey-game in
April 2012.

“To Auto Scale or not to Auto Scale”,
N. D. Mickulicz, Priya Narasimhan, Rajeev Ghandi, ICAC 2013 (USENIX), San Jose, CA

Dynamic SLAs

* Applications on multi-tenancy infrastructure

— With changing application demands (e.g. must
respond to unpredictable events)

* Prevent “over specification” of service level
demands

— User might make an initial assessment of likely
demand (“first stab” at likely app. behaviour)

* Provide SLAs that are “machine generated”

— Based on predictive usage between application
classes

— Offers made to users based on “likely” demand profile

— May utilise resource throttling strategies (cgroups in
Linux — control groups that limit resource
consumption)

5/31/14

20



Dynamic SLAs in OpenStack

[ New SLA Components

S
/User \ [ Existing Nova Components
[ Existing Ceilometer Companents
WS Ag SLA Request VMI & SLA Sl AlCeilameter Components
Nova-AC Nova-AP| Nova-Scheduler
[ Ws-Ag, WS-AN ¢_| | SLA —{ o 1
..-.s.mu.m»mvm] !
Nova Nova
Cloud e SLA/Anomaly C?\ng“w C%nzum
Total Allocated & :"Nu Monitor ode ode
vaila ali = = ~
Capacity ‘C\::)IL::!::: hgration § Ceilalcgroup t+—— ! Ceilo/cgroup
e ;. Enhanced Agent Agent
4 Cielometer

% l l

L Ceilometer Event Bus (RabbitMQ) l

Client

Viglation Responses:

« Operator Notification

+ Application call-back

+ Throttle application (cgroups)
+ Load Migration

*+ SLA renegotiation

Ceilometer

Ceilometer Colector |
Database J

“A Research and Development Plan for Dynamic Service Level Agreements in OpenStack”,
Craig Lee, ITAAC workshop alongside IEEE/ACM Utility & Cloud Computing Conf, Dresden,

December 2013

Admission Control

* Reaching QoS of applications is often strongly driven
by admission control strategies
* Admission control in large-scale cloud data centres
influenced by:
— Heterogeneity = performance/efficiency
— Interference = performance loss from high interference
— High arrival rates = system can become oversubscribed
* Paragon and ARQ could be two approaches
— Paragon: heterogenity and interference aware scheduler

* ARQ: Admission control strategy.

— Use of Paragon to classify applications into multiple
request queues

— Improve utilisation across multiple QoS profiles
“ARQ: A Multi-Class Admission Control Protocol for Heterogeneous Datacenters”,

Christina Delimitrou, Nick Bambos and Christos Kozyrakis
https://www.stanford.edu/group/mast/cgi-bin/drupal/system/files/2013.extended.arq_.pdf

5/31/14

21



Paragon (Stanford)

Classification: ~Netflix Challenge
Small information signal about new application
Leverage system knowledge about previously scheduled applications
Collaborative filtering techniques (SVD + PQ reconstruction with SGD)

-> Scheduling recommendations: Heterogeneity + Interference

Server Platform Caused (¢) Tolerated (t)

Greedy Scheduler:

Co-schedule workloads with no/small interference on suitable hardware platforms
- preserve QoS & improve utilization

Learning
Heterogeneity 5
Apps >
L) App Scheduler f

Classification

v

Interference

System State Metrics

Sources of Interference (Sol)
benchmarking

Targeted microbenchmarks of tunable intensity that
create contention in specific shared resources

Introduce contention in: processor, cache hierarchy
(L1/L2/L3 & TLBs), memory (bandwidth and capacity),
storage

Run application concurrently with microbenchmark

— Progressive tune up intensity until QoS violation

— Associate a “sensitivity score” with application (i.e.
sensitivity to interference)

Similarly, Sensitivity to running application
— Impact of running application on micro-benchmark

— Tuning up application intensity until 5% degradation on
benchmark (compared to execution in isolation)

5/31/14

22



ARQ: Application-aware admission control

* Divide application workload into queues, using
— Interference tolerance information
— Heterogeneity requirement

* Trade off between: (i) waiting time; (ii) quality of a
resource

* Prevent highly demanding applications from blocking
easy-to-satisfy applications

* Understand when a QoS violation is “likely” — re-divert to
a different queue

* Interference function (used to derive a resource quality):
— Interference server can tolerate from the new application (c)

— Interference new workload can tolerate from existing
applications (t)

ARQ: Application-aware admission control

Resource Quality: Degree of tolerated and caused interference in various shared
resources (higher quality means more demanding application)

For applicationi: Qi = ch For server; O = Z”‘
k k

Resource quality-aware queueing: Applications are queued based on the resource
quality they need

Multi-class admission control: Each class corresponds to apps with specific range of
Qi 2 dispatched to servers with the required Qj

Preserving QoS: Applications can be diverdyd to different queues to preserve their
QoS (when waiting time is high)

5/31/14

23



Disturbance Benchmarking

Tolerance of an application to failure
Benchmark injects:

— Workload & Disturbance into System Under Test
— Measures response

Disturbance:

— Events, faults, etc

— Changes QoS profile of the application

Aim to measure “resilience” not availability
— Approach similar to DBench-OLTP

Ability to adapt in the context of a disturbance in
the system

Key Aspect: Injecting Disturbances

= Each disturbance is injected in an Injection Slot while the workload

is applied
| Injection Slot N (30 minutes iong) |
[ |
Disturt System Detects & Repair Action Disturba
Injecte Recovers Applied
L Injection Interval i Detection Interval | Keep Interval KL
! I | 1
k Steady State e Detection Fllecc:.-‘?v’_;' | Recovery | Steady state

= Injection slots are run back-to-back, preceded by an optional Startup
Interval for ramp-up

= For disturbances that require human intervention to recover:
The detection interval is replaced by a fixed, 10-minute time penalty
— Shorter interval for system that auto-detects but requires manual recovery
— A scripted Repair Action is applied after the detection interval

From Aaron Brown and Peter Shum (IBM)

5/31/14

24



Disturbances Injected

= Benchmark capable of injecting 30 types of disturbances

— Representing common expected failure modes, based on internal

expertise, data, and customer survey

Disturbance types

— Attacks (e g. runaway query, load surge, poison message)

— Unintentional operator actions (e.g. loss of table/disk, corrupted data file)

Insufficient resources / contention (e.g. CPU, memory, I/O, disk hogs)

— Unexpected shutdowns (e.g. OS shutdown, process shutdown)

— Install corruptions (e.g. Restart failures on O3, DBMS, App Server)

= Targeted at OS, all middleware and server tiers, and application

From Aaron Brown and Peter Shum (IBM)

Top Customer Pains Overall

Customer Pain

Hang failure of a server: database (DBMS)

Application-related hangs: internal application hang

Leaks: memory leak in user application

Database-related data loss: storage failure affecting database data

Restart failure of operating system on: database (DEMS) node

CPU resource exhaustion on: database (DBMS) node

Miscellanecus hang failures: hang caused by unavailability of remote resource
(e.g., namefauthentication/directory server)

Miscellanecus Restart Failures: orphaned process prevents restart

Restart failure of server process for: database (DBMS) node

Restart failure of operating system on: application server node

Surges: load spike that saturates application

Mizcellanecus stops: Unexpected stop of user application

Database-related data loss: loss of an enfire database file

Application performance affected due fo: parameter setting on database

Useful to compare
this with performance
benchmarks that

we are much more
aware of

Compare with automated
testing mechanisms

From Aaron Brown and Peter Shum (IBM)

5/31/14

25



Metrics for Quantifying Effects of Disturbances (1)

= Metric #1: Throughput Index
— Quantitative measure of Quality of Service under disturbance
— Similar to typical dependability benchmark measure
— Computation for disturbance i:

Throughputlndex, = P;/ Py,.,
where

P, = # of txns completed without error during disturbance injection interval i
P,,.. = # of txns completed without error during baseline interval (no disturbance)

— Range:0.0to 1.0
« Anything below 0.9 is pretty bad
— Average over all disturbances to get final score

From Aaron Brown and Peter Shum (IBM)

Metrics for Quantifying Effects of Disturbances (2)

= Metric #2: Maturity Index
— Novel, qualitative measure of degree of Autonomic capability
— Each disturbance rated on 0 — 8 point scale aligned with IBM’s Autonomic Maturity model

Maturity Level | Brief Description Points
Basic IT staff relies on reports, docs, and manuals to manage individual IT components 0
Managed IT staff uses management tools providing lidated IT 1
Predictive Components monitor and analyze themselves and recommend actions ro IT staff 2
Adaptive IT components monitor, analyze, and take action indspendently and collecrively 4
. T collecrively & ically zelf- ding to business policy 8

+ Non-linear point scale gives extra weight higher maturity

— Ratings based on 90-question survey completed by benchmarker
- Evaluate how well the system detects, analyzes, and recovers from the failure
Example: for abrupt DBMS shutdown disturbance:
“How is the shutdown detected?
A_The help desk calls operators to tell them about a rash of complaints (0 points)
B. The operators notice while chserving a single status monitor (1 point)
C. The autenomic manager notifies the operator of a possible problem (2 points)
D. The i initiates p analysis (4 points)”
— Overall score: averaged point score / 8
Range: 0.0to 1.0

From Aaron Brown and Peter Shum (IBM)

5/31/14

26



5/31/14

Example Results: Detailed Disturbance Response

= Comparison of throughput over injection slot for 2 disturbances:

&0
Disturbance #1 o T RN
(OK response) aou | 1
( | 3 y |
| i/
g i
[ | SUT handles disturbance |
autumatically with |
S minimal impact ]
"
[ 0 1000 1500 20m 200
Time [3)
Eo0nn
N S0000 IS S e ————
Disturbance #2 7 | = 1I
(poor response) 5 4000 [ I Recoveryvia | |
2 /
B manual
g SUT does not ll Repair Action fl
¥ oo f handle disturbance [ t
%
o | NPT A |
o
an 5000 10000 1500 20000

Tme (s

From Aaron Brown and Peter Shum (IBM)

Sample throughput graph for a single fault

Warmup ends; test slot begins Recovery script is executed
: wf{lmtwmf@w,ﬂ* Wﬁ"i'k’ml'f‘l.r""ﬂr'-"ill*q r““’|l’r(‘i"1 il
E . ’] ﬁ}'#ﬂ’ﬁw'MJ&*‘H\\W{W&‘ d
Fa

@ 00 u 1500 2000 2500 00
‘ﬂ\ Time (8] \
Fault is injected; Fault slot ends;
Start measuring throughput Stop measuring throughput

From Aaron Brown and Peter Shum (IBM)

27



Sample graph showing throughput across all four faults

Test phase: Page elements per second

1200
Hoe
1000 |

Page elemens
(-3
=

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 8000 G500 TG00 TEDD GOOD
CPUhog on App Server Time (fiskhog on DBMS

Deadlock on DBEMS MNetwork down on App Server

From Aaron Brown and Peter Shum (IBM)

Configuration Management

Dynamically deploy pre-configured virtual machine
instances

— Replicate across multiple servers

— Deploy a “reference” configuration across clients
CHEF — widely used configuration management tool
(Saas platform, Ruby-based)

— Deploy load balancers, monitoring tools (Nagios) along
with others (sharing “cookbooks” and “recipes”)

— Apache Licence (with Apache SOLR (search engine),
CouchDB)

CF Engine

— Open source (GPL Licence)

— Enables much more complex configurations (-ve)

— Uses a remote agent (also supports a monitoring deamon)

http://www.slideshare.net/jeyg/configuration-manager-presentation

5/31/14

28



Configuration Management

* Amazon CloudFormation another option
— Create & manage AWS instances --

http://aws.amazon.com/cloudformation/

— Provides pre-defined set of templates (WordPress,
Joomla, Windows Server, Ruby on Rails, etc) --

http://aws.amazon.com/cloudformation/aws-cloudformation-templates/

* CloudSoft’s Brooklyn

http://www.cloudsoftcorp.com/communities/

— Open source + support for policies
— Application-level rather than instance-level support

— Enables autonomic adaptation of a deployed
configuration (e.g. auto-scaling policy, replacer/
restarter (high availability) policy)

Stream processing architectures

* Systems that must react to streams of data produced

by the external world
e Stream data source can vary in complexity and type

* Availability of streamed data can also be managed
through an access control mechanism

* Usually operate in real time over streams and
generate in turns other streams of data enabling:

(i) passive monitoring: what is happening, or

(i) active control: suggesting actions to perform, such
as by stock X, raise alarm Y, or detected spatial
violation, etc.

* Stream processing can also lead to semantic
annotation of events

5/31/14

29



Difference from “standard” databases

* Queries over streams are generally “continuous”
» executing for long periods of time
* return incremental results

* permanently installed —i.e. does not terminate after first
execution

Performance metrics should be based on response time rather
than completion time

* Data is not static — as new data is constantly arriving
into the system
— Same query at different times leads to different results (as
long as new data enters the system)
* Typical operations in StreamSQL

— SELECT (execute a function on a stream) and WHERE
(execute a filter on a stream) operators

— Stream merge and join
— Windowing and Aggregation

Analyses of performance

* Response Time
— Average or maximum time between input arrival into the
system, and the subsequent generation of a response
* Support (query) Load

— What is the size of the input (number of data elements) a
stream system can process while still meeting specified
response time target and correctness constraints

* Correctness is time dependent
— Same query at different times = different outcomes

— Potentially multiple correct answers depending on
response time

5/31/14

30



Adaptive Streams

* Three key issues:
— what to remember or forget,
— when to do the model update, and
— how to do the model update

* For streaming — these can be mapped into:
— the size of the window to remember recent examples
— methods for detecting distribution change in the input
— methods for keeping updated estimations for input

statistics
wyn a Estimation
All “x” are real valued, estimator: current ¥
value of “x” + variance (each “x” independently — Estimator N
drawn arm
) Change Detector

Estimator: linear, moving average, Kalman filter

Tp=(1—a)iy | +a-x;.

[The linear estimator corresponds to using @ = 1/N where N is the width

of a virtual window containing the last N elements we want to consider.

Adaptive Sliding Windows (ADWIN)

* Window size — reflects time scale of change
— Small: reflects accurately the current distribution

— Large: many examples are available to work on, increasing
accuracy in periods of stability

* Window content is used for

— detecting change (e.g., by using some statistical test on different sub
windows),

— to obtain updated statistics from recent examples,
— to have data to rebuild or revise the model(s) after data has changed

* Adaptive Windowing:

— Whenever two “large enough” sub windows of W exhibit
“distinct enough” averages = corresponding expected
values are different = drop older portion of window

5/31/14

31



5/31/14

Cloud-based stream processing

e Use of Cloud resources to:

— Execute stream processing operators (may be in-
network)

— VM per operator (dynamically allocated to
overcome peak workloads)

» Operator chaining within/across Cloud
systems
— Scale out
— Fault tolerance

» Operator chaining = processing pipelines
— Similarity with workflow systems

GENI (OpenFlow and MiddleBox)

* L2/L3 Technology to permit software-defined
control of network forwarding and routing

* Integration of specialist network “appliances’
to support specific functions
— These could be user defined
— Linux hosting

* MiddleBox: In-network general-purpose
processors fronted by OpenFlow switches

* Integrate services from multiple Clouds

— Allocation of networks and “slices” across
different resources

)

32



In-transit Analysis

4
1
!

v

Delay (QoS parameter) .

P)

* Data processing while data is in movement from source to
destination

* Question: what to process where and when
* Use of “slack” in network to support partial processing
* Application types:

— Streaming & Data Fusion requirement

In-transit Analysis ... 2

Shared Cluster

* Data processing while data is in movement from source to
destination

* Question: what to process where and when
* Use of “slack” in network to support partial processing

5/31/14

33



Workflow level Representation

0o AU naa

Proc. Unit: t, t;, ADSS: Proc. Unit: t,, t,, t,3

tZl,tZZ

mapping mapping

ADSS
 ————

buffer

In transit '

‘ Resourcer;: t;; t;, ‘

local storage

B Bandwidth

)\ Input rate ADSS model &

1 6 Consumer’s data rate
simulator

L Controlled output rate () Disk transfer rate 70

Rafael Tolosana-Calasanz et al. “Revenue-based Resource Management on Shared
Clouds for Heterogenous Bursty Data Streams”, GECON 2012, Springer

Approach & focus

Adaptive infrastructure for sensor data analysis

* Multiple concurrent data streams with SLA

* Variable properties: rate and data types; various processing models
¢ Support for in-transit analysis, enforcing QoS

¢ Support for admission control & flow isolation at each node

¢ In case of QoS violation, penalisation

¢ Architectural components
e Business rules for SLA Management : Actions to guarantee QoS & maximize

revenue

From Jose Banares (University of Zaragoza)

5/31/14

34



From Jose Banares (University of Zaragoza)

System Architecture

Event Processing Network Stage
Data injection rate

g = "O——e—0F)

Event processing Service Node

-
Traffic Shaping [~ QoS Provisioning _.-.. ADSS [
-

Token Bucket > %\ 2
*[input uttr 1 B B

Token
H-A-""'ﬂamn Shaping Local
Storage

'
5 <2 SLA SLA Manager Ea

* 3 key components / node: Token Bucket, Processing Unit & output streaming

From Jose Banares (University of Zaragoza)

Token Bucket (shaping traffic)

slope R, S(t)

slope R A(t) slope R L7
E(t
R tokens/s AW z ®
‘ \ bC .
C-R
b i
tokens d
v,
Ba
—_— - -
C bps time time

A(t): Amount of data arriving up to time t

Two key parameters of interest:

¢ R:Also called the committed information rate (CIR), it specifies how much data can be
sent or forwarded per unit time on average

* B:it specifies for each burst how much data can be sent within a given time without
creating scheduling concerns

5/31/14

35



5/31/14

Token Bucket (shaping traffic)

100 Input &throughput rates 100 B Input &throughput rates
90 . without token bucket 90 i with token bucket
80 ; i 80 i !
g 7 e i dst g7 P “~+in_ds1
H ] a & ! i Loh 0000 e
@ 60 | s in_ds2 @ 60 i ; ‘\._.} in_ds2
i: 50 { ——out_ds1 % 50 i ~out dst
< — EA : : —out_ds2
g Y0 out_ds2 s : g
5 30 5 30 i
20 20 -, [ SN
10 10
0 0 -
0 60 1°0 120 240 300 360 420 480 540 0 60 120 180 240 300 360 420 480 540
(R time (sec) A time (sec)
Q)

From Jose Banares (University of Zaragoza)

Data injection rate

SLA

From Jose Banares (University of Zaragoza)

Workflow
- Stages

01001100

11011000__;
01101101 '.:IID

", input buffer

01100111

Each token bucket provides
us tunable parameters: R,b

Controller: monitors &
modifies behaviour

“ero11000 -
00911010
10111011 ;
11011010 = »
O1¥01010 ° input buffer =] P input buffer

[[[]m
mw! TB buffer ’ R

tinput rate (D Contraller z
2. Buffer =
couponcy NP ¢@
3.Num Rule
resources P 0‘"‘

Engine J
. in numJ

resources
PU

Avallable*@ \
resources :

R :okens 5

i

input PU buffer

Sensors

4 Bandwith

36



Resource addition based on buffer occupancy

& 60 80 __ - bTBdsl
£ so 70 £ bTBds21
@ 40 gg s bTBds22
£ 30 a0 £ - - -bTBds23
s 20 30 ——Total input
= 20
10 1o Total output
o o
time (seconds)
35 °
Number of PU & PU Buffer Occupancy 8
30
5 7
£ s Ts bPUds1
] £ - —bPuds21
S 20 s 3 ©
= kS bPUds22
£ 1s 45
= 3 & — - °bPUds23
S 10 =
=2 2 —#PU
s 1
o o
as 2000
a0 7 1800 ,
nstant
g 1600
235 1200 revenue
230
€ 55 1200 ~~~ Revenue
£ 20 1000
z —- soo 2
=15 ————
0 = Revenue with underprovisioning and igg g
s e control of resources to avoid penalizations 200

[ o

o SsoggsSssSgggssSoeggSssSSgsg
SRI3LIESI2I8823883228

SIS RII[ISITRRSIIIETSRAARR

100
120
140
160
180

Autonomic Computational Science

* Enable automated tuning of application behaviour

— Execution Units, Communication, Coordination, Execution
Environment

— Relation to “Reflection” and Reflective Middleware + Use of
intercession on a meta-model + domain-model

— Developing a meta-model is often difficult
* Tuning may be:

— Centralized

— Consist of multiple control units

— Tuner external to the application

* Comparison with Control systems & MDA
— Multiple, often “hidden” control loops
— Inclusion of run-time configuration parameters at design time
— Model centric view that takes deployment and execution into account

Shantenu Jha, Manish Parashar and Omer Rana,
Self-adaptive architectures for autonomic computational science
Proceedings of the First international conference on Self-organizing architectures ,
pp 177-197, LNCS 6090, Springer Verlag 2010.

5/31/14

37



Autonomic Computational Science

Conceptual Framework
A conceptual framework that comprises of the following elements:

@ Conceptual Architectures
@ Elements of the Architecture

o Application-level Objective(s)

o Mechanism
o Strategy

@ Use in applications driven by the following questions:

@ Which strategy is best for a given application objective? What role
do application characteristics play in determining such a strategy?

@ Which mechanism can be used to implement autonomic behaviour
— and at which part of the application lifecycle?

o What support and implementation tools can be used to achieve this
autonomic behaviour — and can these be shared across

applications?

Tuning of application & resource manager

param eters
Resources
Results E
Application ) Resource /
Inputs

Parameters

Elj =

Manager i@
El

Tuning
Parameters

.

Tuning

Autonomic {

5/31/14

38



Tuning by application
Resources

Results
“— | Resource /

Application —_—
— Inputs Manager \E

El
Tuning
Parameters

Autonomic {
Tuning Ej

Historical (monitoring) data

Tuning
Strategy

@ Resource reservation to achieve particular QoS-criteria

@ Dynamic analysis of data stream from a scientific instrument — may also involve
analysis of video/audio feeds

Application

Thas
{Application Objectives}
e.g. load bala\ncing

/

achieved through /~ A ; ;
Q/, \og;anlsed using
{mechanisms} .prescrlbe {strategies}
e.g. change DAG fan-in/fan-out e.g. work
adaptation

@ Application-level Objective (AQ): User identified application requirement, e.g.
increase throughput, reduce task failure, load balance, etc

@ Mechanism: action used by application or resource manager to achieve AQ —
mechanism m: ({m;}, {mf}, {mo}, {m3}), e.g. file staging:

e {m;} and {m,}: file references before/after staging process
e {mf}: input events that trigger start of file staging
e {mg}: output events after file staging is completed.

@ Strategy: consists of a collection of mechanisms — manual or dynamically
constructed by an autonomic approach

5/31/14

39



Spatial, Temporal and Computational Heterogeneity and
Dynamics in SAMR

Temperature (K) e —
Spatial
Heterogeneit

Temperature
0.4ms Temporal
v Heterogeneity
Simulation of
OH Profile

combustion based
on SAMR (H2-Air
mixture; ignition via
3 hot-spots)

Courtesy: Sandia National Lab

Autonomics in SAMR

* Tuning by the application
— Application level: when and where to refine

— Runtime/Middleware level: When, where, how to partition and
load balance

— Runtime level: When, where, how to partition and load balance
— Resource level: Allocate/de-allocate resources

* Tuning of the application, runtime

— When/where to refine

— Latency aware ghost synchronization
Heterogeneity/Load-aware partitioning and load-balancing
Checkpoint frequency

— Asynchronous formulations

5/31/14

40



I'wo epochs
Jul/Aug 05 & Oct/Nov 05

From: G. Bruce Berriman

Montage

Instrument Bands (um) Field-of -View
(arcmin)
IRAC 35,45,58,80 —rhe
MIPS 24 5.4 x5.4
70 525 x 2.6
160 0.5 x 0.5

Images Courtesy Margaret AMeixner (P1)

Images-rawdrtbl

mosaic

)
)

Nontage workflow

(Y (Y () [oree
1/0 intensive
(Lmoir_] workflow

mFitPlane Significant
data
Lmconeateit | parallelism
mBighodel
mBAckground

5/31/14

41



Montage:

Tuning Mechanisms

Vectors

Mechanisms

Coordination

Adapt DAG structure,
Change Fan In/Out, Cluster Nodes,
Change Task Granularity

Communication

File staging, File aggregation,
File splitting, File indexing

Execution
Environment

DAG execution (Mapping/Scheduling),
Resource Selection/Management,
Task re-execution,

Task migration, Storage management,
File caching, File distribution,
(multicast, broadcast), File
re-transmission, Checkpoint/restart

Montage:
Tuning Strategy
Application | Autonomic Strategy
Objective
Load 1. Adapt task mapping granularity
Balancing based on system capabilities/state

File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching,
Storage Management

2. Change fan-in/fan-out

DAG structure modification

File staging, File splitting/merging
Task rescheduling, Task migration
File distribution and caching
Storage Management

5/31/14

42



Montage:
Tuning Strategy
Application | Autonomic Strategy
Objective
Handling 1. Reschedule the task on
Task a different existing resource
Failure File staging
Task rescheduling, Task migration
2. Reschedule the task
On a new resource
Resource discovery and allocation
Task rescheduling
File staging (migration/replication)
3. Roll back from checkpoint
on the same resource
Checkpoint interval and granularity
Montage:

Tuning Strategy
Application | Autonomic Strategy
Objective
Improving 1. Increase fan out
Throughput | Task rescheduling, Task migration

File staging, File splitting/merging
DAG structure modification

File distribution and caching,
Resource allocation

2. Change Scheduling Approach
File distribution (staging, merging,
splitting, replication)

Task rescheduling and mapping

5/31/14

43



5/31/14

Concluding comments

* Autonomic strategies:

— Often rooted in control systems (generally closed-
loop feedback control)

— Can use a variety of control strategies — which
include use of machine learning

* Formulating the problem often difficult
— Multi-criteria optimisation
— Often multiple, difficult to separate control loops

* Monitoring infrastructure choice is key

44



