
CometCloud

Moustafa AbdelBaky, Javier Diaz-Montes, and Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)

Rutgers Discovery Informatics Institute (RDI2)

Rutgers, The State University of New Jersey

CometCloud Overview

• Autonomic framework designed to enable dynamic end-to-end
application workflows across federated infrastructure

• Expose federation using elastic cloud abstractions and science-as-
a-service platforms
– Elastic access to resources - scale up/down and out

– Provision resources to meet scientific objective (e.g., accuracy)

• Provide policy-driven, autonomic, and on-demand federation of
geographically distributed compute and data resources
– Policies encapsulate user’s requirements (deadline, budget, etc.), resource

constraints (failure, network, availability, etc.)

• Provide programming abstractions to develop and deploy
applications on the federated clouds
– Master/worker, Workflows

Application/Programming layer

autonomics: Dynamics workflows;

Policy based component/service

adaptations and compositions

Autonomics layer: Resource

provisioning based on user objectives;

estimation of resource requirement

initially, monitor application performance,

and adjust resource provisioning

Service layer autonomics: Robust

monitoring and proactive self-

management; dynamic

application/system/context-sensitive

adaptations

Infrastructure layer (overlay): On-

demand scale-out; resilient to failure and

data loss; handle dynamic

joins/departures; support “trust”

boundaries

CometCloud Architecture

Comet Coordination Spaces

• Virtual semantically-specialized shared space abstraction

– The information is deterministically mapped, preserving locality, to a

dynamic set of peer nodes in the system

– Resulting lookup system preserves content locality and guarantees

content-based information queries - keywords, partial keywords and

wildcards

• The space is associatively accessible by all system nodes

– Access is independent of the physical locations of data tuples or hosts

• Coordination/interaction through the shared spaces

– Runtime management, push/pull scheduling and load-balancing, self-

organization, fault-tolerance

• Dynamically constructed transient spaces enable application

to exploit context locality

• Peer nodes form 1D overlay

– E.g., Chord simple ring topology

• Hilbert SFC maps tuples from a kD space
to 1D node index

– Preserves content locality: lexical
keyword locality

• Flexible tuple matching - Squid

– Wildcards, partial wildcards, ranges

– Bounded costs and load balancing

Distributed Hash Table

Tuple (kw1, kw2, …, kwD) Point/region in a K-dimensional space

Point/region in a 1-dimensional index space Peers (P1, P2, …Pk, …)

SFC

Routing from node 1 to node 6

5

1

2

3

4

6

7

0

3 + 1 5

3 + 2 5

3 + 4 0

1 + 1 3

1 + 2 3

1 + 4 5

0 + 1 1

0 + 2 3

0 + 4 5

CometCloud Space: Tuple, Templates &

Operators

• XML tuples and templates

• Basic coordination primitives / Flexible matching

– out (ts, t): a non-blocking operation that inserts tuple t into space ts

– in (ts, t’): a blocking operation that removes a tuple t matching template t’

from the space ts and returns it

– rd (ts, t’): a blocking operation that returns a tuple t matching template t’

from the space ts. The tuple is not removed from the space

The Comet Space – Basic Idea

• Constructed from a semantic multi-dimensional information space

– Numbers, English letters, wild card ‘*’

• Application specific semantics

– Dimensions, coordinate, keywords

2D keyword space for

a P2P file sharing

system

3D keyword space

for resource

sharing, using the

attributes: storage

space, base

bandwidth and cost

computer

network

Tuple

keyword1

k
e
y
w

o
rd

2

Storage space (MB)

B
a
s
e

b
a
n

d
w

id
th

 (
M

b
p

s
)

Tuple

10

100

 29

comp*

Template

(comp*, *)

keyword1

k
e
y
w

o
rd

2

Storage space

(MB)

B
a
s
e

b
a

n
d

w
id

th

(M
b

p
s
)

20
25

10

Template

(10, 20-25, *)

Programming Models – Master/Worker

• A Master generates tasks, submits
them into the coordination space,
and collects results

• Secure workers provide their local
space as part of the coordination
space and computing capability

• Unsecured workers only provide
computing capability and get tasks
through the proxy and request
handler

• Proxy receives task requests from
unsecured workers and forwards the
requests to a request handler.

• Request handler is part of the
coordination space and picks up
tasks for unsecured workers

Programming Models – Workflow

• Data-driven workflow modeled as a graph – Edges are data
dependencies

• Each stage is heterogeneous in terms of behavior, the length of
computation, the amount of required resources, etc.

• Elastically compose appropriate cloud services and capabilities to

ensure that the user’s objectives are met

• Offer simple APIs to integrate new applications and policies

• XML workflow definition

• New Application

• Task generator

• Worker

• New Policies

• Scheduling

Autonomics in CometCloud

• Autonomic manager
– Manages workflows

– Benchmarks application

– Provision resources

• Adaptivity manager
– Monitors application performance

– Adjusts resource provisioning

• Resource agent
– Manages local cloud resources

– Accesses task tuples from
CometCloud

– Retrieve input data

– Gathers results from local workers

– Send results to the workflow (or
application) manager

Cloud
HPC Grid

HPC Grid
Cloud

Cloud
Cloud

Cloud
Cluster

Cluster Agent Cloud Agent Grid Agent

CometCloud

Objective
Autonomic manager

Resource

manager

Autonomic

scheduler

Runtime

estimator

Adaptivity

Manager

Monitor

Analysis

Adaptation

Application/

Infrastructure

adaptivity

Application

Resource
view

Application
data

Workflow Manager

User Objectives

• Acceleration

– Clouds could be used as accelerators to improve the application time to

completion

– Alleviate the impact of queue wait times

– Exploit an additionally level of parallelism by offloading appropriate

tasks to Cloud resources, given appropriate budget constraints

• Conservation

– Clouds could be used to conserve HPC allocations, given appropriate

runtime and budget constraints

• Resilience

– Clouds could be used to handle unexpected situations such as an

unanticipated HPC downtime, inadequate allocations or unanticipated

queue delays

Constraints

• Deadline

– Time constraint to complete an application

– To select the fastest resource class for each task and to decide the

number of nodes per resource class based on the deadline

• Budget

– Budget constraint to complete an application

– When a budget is enforced on the application, the number of allocable

nodes is restricted by the budget

• Economics + deadline

– Resource class can be defined as the cheaper but slower resource

class that can be allocated to save cost unless the deadline is violated

Federation Model

• Dynamic federation coordinated using

CometSpaces at two levels

– Federation Sites coordinate to:

• Identify themselves / verify identity

• Advertise resources capabilities,

availabilities, constraints

• Discover available resources

– Resources specified based on

availability, capabilities,

cost/performance constraints, etc

• Marketplace - Business/social models

for resource sharing

• Autonomic resource provisioning,

scheduling and runtime adaptations

Autonomic Use Case

• Montage Workflow

S1 S2 S3 S4 S5

Montage Experiment Setup

• Montage workflow

• Three heterogeneous and

geographically distributed

clouds

FutureGrid Resources

• Alamo – TACC

• Sierra – SDSC

• Hotel – U. Chicago
MB/s

Optimizing Resource Usage in Multi-Clouds

• Execute a data-driven workflow in a multi-cloud environment

• Deadline Objective (greedy heuristic)

– Performance optimization (Proc) ---------

– Data locality optimization (Data) ---------

– Performance and data opt. (ProcData) -

– Cost optimization (Cost) -------------------

Montage Workflow Results

In-transit Data Analytics for Smart Buildings -

SportE2 facility pilots
• Sensors interface with real world

artifacts

• Amount of data generated and

processing requirements are hard

to predict

• Near real-time energy optimization

– EnergyPlus simulations

– Efficiency depends on the capacity of the

computing infrastructure

• How to use of a multilayer Cloud

infrastructure

– Computing at the Edges

Computing at the Edges

• Exploit the rich ecosystem of data and computation resources at

the edge so that data is not moved

• Leverage resources and services at the logical extreme of the

network and along the data path to increase the value of the data

while potentially reducing its volume

• Identify the high level of concurrency that is pervasive

throughout the ecosystem as the key to realizing scalable data-

centric applications

Research Questions

• How to use of a multilayer Cloud infrastructure that distributes
processing:
– At the edge of the Cloud -- Sensing nodes, multiple

intermediate/gateways nodes

– Deep into the Cloud -- Complex centralized data center

• Can Cloud services and SDN be used together to meet SLA
requirements?

• How to decide :
i. Where processing should be carried out?

ii. What processing should be undertaken centrally vs. at an edge node?

iii. How processing can be distributed across multiple data center
locations to achieve QoS and cost targets?

iv. Business model?

In-transit Data Analytics

• A job is created when new data is available (set of tasks)

• Job SLA = { Deadline, Completion ratio, Budget }

• Marketplace scenario where different sites bid to perform

computation

• Maximize Job completion ratio subject to Deadline and Budget

• CometCloud federation with in-transit capabilities

• In-transit strategies to help minimizing idle time and

maximizing computation

 – Traditional client (“In-Transit”), in-transit

optimization happens after a resource

provider site has been selected

– In-transit aware client (“In-Transit2”), in-

transit optimization is taken into account

when selecting a destination site

Problem definition

• Assumptions

– Job data is located in a specific location, called source s

– Job will be executed in a specific site, called destination d

– W(J) the time when job J is scheduled to start its computation at

destination resource

– Set of q network data centers

• Maximize in-transit computation

• Subject to

Experiment Setup

• Deployed our federation model on the Amazon EC2

• 8 VM emulated different geographically distributed sites

• Mininet used to model network and emulate SDN capabilities

• An SDN controller manages network using two types of

connections

– TCP was used for regular communication and establishing data paths

– UDP was used for gathering information

Job completion ratio Job Acceptance Ratio

Overall Revenue Overall Overheads

In-transit Results

