Programming with CometCloud

Moustafa AbdelBaky, Javier Diaz-Montes, and Manish Parashar

NSF Cloud and Autonomic Computing Center (CAC)
Rutgers Discovery Informatics Institute (RDI²)
Rutgers, The State University of New Jersey
Introduction

• Learn how to use CometCloud to execute a workflow using autonomic in a federation
 – If application is deployed, we just simple create a workflow description

• Learn how to create a new application using the APIs
 – We need to create two components to Generate tasks and to Compute tasks (similar to master/worker models)
 – We also need to prepare the worker machine (e.g., VM image)

• Learn how to deploy CometCloud to create a federation
 – Download at http://tinyurl.com/getcomet

• Visit http://tinyurl.com/cometbitbucket
Defining a Workflow

- A workflow is composed by a set of stages
- A stage has a set of tasks with no dependencies (bag of tasks)
- Objective and constraints of a stage are enforce by selecting a scheduling policy (each stage can have a different one)
- Dependencies are defined across stages, DAG + loops
- A dependency can be blocking or non-blocking
 - Blocking – all tasks of a stage have to finish before the following stage starts
 - Non-Blocking – every time a task finishes we evaluate if there are tasks that can be executed in following stages
Simple Workflow Definition

- Define a simple two stages map/reduce workflow
- Four sections, namely stages definition, scheduling policies, dependencies, and loops (optional)

```xml
<xflow name="SimpleWorkflow">
<!-- Stages definition -->

<stages>
<!-- Stage 1 -->

<stage id="S1" type="AppGenerateClass" value="tlass.application.cometcloud.sample.GenerateTasks" method="map"/>
<stage id="S1" type="PropertyFile" value="./sample.properties"/>
<stage id="S1" type="Application" value="cbir"/>
<stage id="S1" type="InputData">
  <InputData value="jdiaz@sierra.futuregrid.org:/home/inputs/" zone="zoneA" site="siteSierra" constraint="zoneA,siteIndia,siteAlamo"/>
  <InputData value="jdiaz@hotel.futuregrid.org:/home/inputs/" zone="zoneA" site="siteHotel" constraint="zoneA,siteIndia"/>
  <InputData value="jdiaz@alamo.futuregrid.org:/home/inputs/" zone="zoneB" site="siteAlamo" constraint=""/>
</stage>

<stage id="S1" type="Results" value="" zone="" site="" constraint="zoneA,siteIndia,siteSierra,zoneB""/>

<!-- Stage 2 -->

<stage id="S2" type="AppGenerateClass" value="tlass.application.cometcloud.sample.GenerateTasks" method="reduce"/>
<stage id="S2" type="PropertyFile" value="./sample.properties"/>
<stage id="S2" type="Application" value="cbir"/>
<stage id="S2" type="InputData">
  <InputData value="jdiaz@alamo.futuregrid.org:/home/inputs/" zone="zoneB" site="siteAlamo" constraint=""/>
</stage>

<stage id="S2" type="Results" value="jdiaz@sierra.futuregrid.org:/home/output/" zone="zoneB" site="siteSierra" constraint="siteSierra"/>
</stages>
```
### Policy Name	Description
MinRunningTime | Minimum completion time

DeadlineLocalityAwareProc | Set of resources needed to complete all tasks within a given deadline while satisfying an objective function. Objective function: performance machine.

DeadlineLocalityAware | Objective function: trade-off between the highest performance and the lowest estimated transfer time.

DeadlineLocalityAwareCost | Objective function: cheapest available resource that can complete the task within the given deadline.

DeadlineLocalityAwareData | Objective function: estimated transfer time is minimum.

BudgetConstraint | Finds a solution that minimizes the total execution time (i.e., critical path) while keeping the cost of the solution within the given budget.
Command Line Interface

- workflowClient.sh
 -serverPort <port>
 -serverAddress <serverAddress>
 (-regWorkflow <workflowFile> | -checkStatus <workflowId> | -cancelWorkflow <workflowId> | -getSupportedApps | -getResults <workflowId> -user <remoteUserId> -path <local path>)

- Parenthesis means that you need to specify one of the options
Developing Applications

• http://tinyurl.com/developcomet
Quick Start Deployment

- http://tinyurl.com/runcomet

Supported Resources
- Clusters
- Cloud Resources

<table>
<thead>
<tr>
<th>ProviderType</th>
<th>Platform</th>
<th>API-used</th>
</tr>
</thead>
<tbody>
<tr>
<td>openstack_ec2</td>
<td>OpenStack EC2</td>
<td>boto</td>
</tr>
<tr>
<td>openstack_nova</td>
<td>OpenStack Nova</td>
<td>novaclient</td>
</tr>
<tr>
<td>nimbus_ec2</td>
<td>Nimbus EC2</td>
<td>boto</td>
</tr>
<tr>
<td>aws_ec2</td>
<td>AWS EC2</td>
<td>boto</td>
</tr>
</tbody>
</table>
C-PORTS: DOCKER CONTAINERS ACROSS MULTIPLE CLOUDS AND DATACENTERS
Docker the new Cloud?

The “Container” Concept. Deploy everything you need to run your software in one container.

Image: Docker website https://www.docker.com/whatisdocker
Docker Across Clouds

- Container deployments are currently focused at the single-site level
 - “On-premise” data center, single cloud provider, single availability zone
- The goal of C-Ports is to investigate the use of containers across a federation of resources and adapt to multiple availability zones, multiple cloud providers, as well as hybrid [public/private] cloud infrastructure